1. A multicenter evaluation of computable phenotyping approaches for SARS-CoV-2 infection and COVID-19 hospitalizations.
- Author
-
Khera, Rohan, Mortazavi, Bobak J., Sangha, Veer, Warner, Frederick, Patrick Young, H., Ross, Joseph S., Shah, Nilay D., Theel, Elitza S., Jenkinson, William G., Knepper, Camille, Wang, Karen, Peaper, David, Martinello, Richard A., Brandt, Cynthia A., Lin, Zhenqiu, Ko, Albert I., Krumholz, Harlan M., Pollock, Benjamin D., and Schulz, Wade L.
- Subjects
RESEARCH ,CLINICAL pathology ,COVID-19 ,ACQUISITION of data methodology ,PREDICTIVE tests ,HOSPITAL mortality ,T-test (Statistics) ,HOSPITAL care ,DESCRIPTIVE statistics ,MEDICAL records ,CHI-squared test ,STATISTICAL hypothesis testing ,ELECTRONIC health records ,SENSITIVITY & specificity (Statistics) ,DATA analysis software ,COVID-19 testing ,MEDICAL coding - Abstract
Diagnosis codes are used to study SARS-CoV2 infections and COVID-19 hospitalizations in administrative and electronic health record (EHR) data. Using EHR data (April 2020–March 2021) at the Yale-New Haven Health System and the three hospital systems of the Mayo Clinic, computable phenotype definitions based on ICD-10 diagnosis of COVID-19 (U07.1) were evaluated against positive SARS-CoV-2 PCR or antigen tests. We included 69,423 patients at Yale and 75,748 at Mayo Clinic with either a diagnosis code or a positive SARS-CoV-2 test. The precision and recall of a COVID-19 diagnosis for a positive test were 68.8% and 83.3%, respectively, at Yale, with higher precision (95%) and lower recall (63.5%) at Mayo Clinic, varying between 59.2% in Rochester to 97.3% in Arizona. For hospitalizations with a principal COVID-19 diagnosis, 94.8% at Yale and 80.5% at Mayo Clinic had an associated positive laboratory test, with secondary diagnosis of COVID-19 identifying additional patients. These patients had a twofold higher inhospital mortality than based on principal diagnosis. Standardization of coding practices is needed before the use of diagnosis codes in clinical research and epidemiological surveillance of COVID-19. [ABSTRACT FROM AUTHOR]
- Published
- 2022
- Full Text
- View/download PDF