1. DNA barcodes reveal the hidden arthropod diversity in a threatened cactus forest of the central Andes.
- Author
-
Padró, Julián, Saint Esteven, Alejandro, and Soto, Ignacio M.
- Subjects
ARTHROPOD diversity ,CACTUS ,KEYSTONE species ,ECOSYSTEMS ,GENETIC barcoding ,DNA - Abstract
Desert ecosystems are currently threatened by human activities resulting in the rapid decline of xerophytic plants and specialized fauna. In South America, the demise of cactus species already resulted in the population decline of > 30% of the iconic giant columnar cactus Trichocereus terscheckii. The increasing vulnerability of these keystone species could trigger a cascade of secondary extinctions in highly dependent organisms. Thus, necrotic cacti constitute an important habitat for desert arthropods, yet little is known on the hidden diversity of this neglected niche. We used DNA barcode techniques to survey the diversity of arthropods in a threatened cactus forest dominated by T. terscheckii in northwestern Argentina. We obtained a total of 542 mitochondrial barcode sequences, resulting in 323 Molecular Taxonomic Units (MOTUs) associated to the xerophytic forest and 21 MOTUs exclusive to the giant cactus necrosis. Our results indicated that the area is a biodiversity hotspot within the harsh Andean desert and suggests that nearly 30 species could occur in the decaying cactus, representing the highest richness of cactophilic arthropods recorded in any cactus on the continent to date (6 orders and 16 families). The community structure of cactophilic arthropods showed a phylogenetic clustering pattern, suggesting the coexistence of closely related species. Overall, our study indicates that the giant cactus necrosis sustains a particular phylogenetic diversity of desert arthropods, while demonstrating the efficacy of DNA barcodes for biodiversity assessments in complex and poorly understood ecological systems. [ABSTRACT FROM AUTHOR]
- Published
- 2023
- Full Text
- View/download PDF