1. Multifactorial effects of warming, low irradiance, and low salinity on Arctic kelps.
- Author
-
Lebrun, Anaïs, Miller, Cale Andrew, Meynadier, Marc, Comeau, Steeve, Urrutti, Pierre, Alliouane, Samir, Schlegel, Robert, Gattuso, Jean-Pierre, and Gazeau, Frédéric
- Subjects
LAMINARIA ,KELPS ,GLACIAL melting ,SALINITY ,ARCTIC climate ,TUNDRAS ,SEA ice ,GLACIERS - Abstract
The Arctic is projected to warm by 2 to 5 °C by the end of the century. Warming causes melting of glaciers, shrinking of the areas covered by sea ice, and increased terrestrial runoff from snowfields and permafrost thawing. Warming, decreasing coastal underwater irradiance, and lower salinity are potentially threatening polar marine organisms, including kelps, that are key species of hard-bottom shallow communities. The present study investigates the physiological responses of four kelp species (Alaria esculenta, Laminaria digitata, Saccharina latissima, and Hedophyllum nigripes) to warming, low irradiance, and low salinity through a perturbation experiment conducted in ex situ mesocosms. Kelps were exposed during six weeks to four experimental treatments: an unmanipulated control, a warming condition mimicking future coastlines unimpacted by glacier melting under the CO
2 emission scenario SSP5-8.5, and two multifactorial conditions combining warming, low salinity, and low irradiance reproducing the future coastal Arctic exposed to terrestrial runoff following two CO2 emission scenarios (SSP2-4.5 and SSP5-8.5). The physiological effects on A. esculenta, L. digitata and S. latissima were investigated and gene expression patterns of S. latissima and H. nigripes were analyzed. Specimens of A. esculenta increased their chlorophyll a content when exposed to low irradiance conditions, suggesting that they may be resilient to an increase in glacier and river runoff and become more dominant at greater depths. S. latissima showed a lower carbon:nitrogen (C:N) ratio at higher nitrate concentrations, suggesting coastal erosion and permafrost thawing could benefit the organism in the future Arctic. In contrast, L. digitata showed no responses to the conditions tested on any of the investigated physiological parameters. The gene expressions of H. nigripes and S. latissima underscores their ability and underline temperature as a key influencing factor. Based on these results, it is expected that kelp communities will undergo changes in species composition that will vary at local scale as a function of the changes in environmental drivers. For future research, potential cascading effects on the associated fauna and the whole ecosystem are important to anticipate the ecological, cultural, and economic impacts of climate change in the Arctic. [ABSTRACT FROM AUTHOR]- Published
- 2023
- Full Text
- View/download PDF