9 results on '"Renwick, James A."'
Search Results
2. Delineating Polynya Area Using Active and Passive Microwave Sensors for the Western Ross Sea Sector of Antarctica.
- Author
-
Burada, Girija Kalyani, McDonald, Adrian, Renwick, James, and Jolly, Ben
- Subjects
SEA ice ,POLYNYAS ,SYNTHETIC aperture radar ,MICROWAVES ,K-means clustering ,DETECTORS - Abstract
A polynya is an area of open water or reduced concentration of sea ice surrounded by either concentrated sea ice or land ice. They are often seen as sites of intense ocean–atmosphere heat exchange and as ice production factories. Given their importance, it is crucial to quantify the accuracy of satellite-derived polynya information. Polynyas in their early evolution phase are generally narrow and occur at scales likely too fine to be detected by widely used passive microwave (PMW) radiometric sensors. We derived 40 m scale polynya information over the western Ross Sea from high-resolution Synthetic Aperture Radar (SAR) Sentinel-1 C-band data and examined discrepancies with larger-scale estimates. We utilized two automated algorithms, supervised (a rule-based approach) and unsupervised (a combination of texture analysis with k-means clustering), to accurately identify the polynya areas. We generated data for validation using Sentinel-1 data at instances where polynyas can be visually delineated. Results from PMW sensors (NSIDC and AMSR2) and SAR-based algorithms (rule-based and texture-based) are compared with manually delineated polynya areas obtained through Sentinel-1. Analysis using PMW sensors revealed that NSIDC overestimates larger polynyas and underestimates smaller polynyas compared to AMSR2. We were more accurately able to identify polynya presence and area using Sentinel-1 SAR observations, especially in clear cases and cases when PMW data miscalculates the polynya's presence. Of our SAR-based algorithms, the rule-based approach was more accurate than the texture-based approach at identifying clear polynyas when validated against manually delineated regions. Altogether, we emphasize the need for finer spatio-temporal resolution data for polynya studies. [ABSTRACT FROM AUTHOR]
- Published
- 2023
- Full Text
- View/download PDF
3. WMO Evaluation of Two Extreme High Temperatures Occurring in February 2020 for the Antarctic Peninsula Region.
- Author
-
Francelino, Márcio Rocha, Schaefer, Carlos, Skansi, Maria de Los Milagros, Colwell, Steve, Bromwich, David H., Jones, Phil, King, John C., Lazzara, Matthew A., Renwick, James, Solomon, Susan, Brunet, Manola, and Cerveny, Randall S.
- Subjects
HIGH temperatures ,RADIATION shielding ,PERMAFROST ,TEMPERATURE sensors ,DATA analysis - Abstract
Two reports of Antarctic region potential new record high temperature observations (18.3°C, 6 February 2020 at Esperanza station and 20.8°C, 9 February 2020 at a Brazilian automated permafrost monitoring station on Seymour Island) were evaluated by a World Meteorological Organization (WMO) panel of atmospheric scientists. The latter figure was reported as 20.75°C in the media. The panel considered the synoptic situation and instrumental setups. It determined that a large high pressure system over the area created föhn conditions and resulted in local warming for both situations. Examination of the data and metadata of the Esperanza station observation revealed no major concerns. However, analysis of data and metadata of the Seymour Island permafrost monitoring station indicated that an improvised radiation shield led to a demonstrable thermal bias error for the temperature sensor. Consequently, the WMO has accepted the 18.3°C value for 1200 LST 6 February 2020 (1500 UTC 6 February 2020) at the Argentine Esperanza station as the new "Antarctic region (continental, including mainland and surrounding islands) highest temperature recorded observation" but rejected the 20.8°C observation at the Brazilian automated Seymour Island permafrost monitoring station as biased. The committee strongly emphasizes the permafrost monitoring station was not badly designed for its purpose, but the project investigators were forced to improvise a nonoptimal radiation shield after losing the original covering. Second, with regard to media dissemination of this type of information, the committee urges increased caution in early announcements as many media outlets often tend to sensationalize and mischaracterize potential records. [ABSTRACT FROM AUTHOR]
- Published
- 2021
- Full Text
- View/download PDF
4. Consistent biases in Antarctic sea ice concentration simulated by climate models.
- Author
-
Roach, Lettie A., Dean, Samuel M., and Renwick, James A.
- Subjects
SEA ice ,ATMOSPHERIC models ,CLIMATE change models ,ICE formation & growth ,ICE sheets -- Environmental aspects - Abstract
The simulation of Antarctic sea ice in global climate models often does not agree with observations. In this study, we examine the compactness of sea ice, as well as the regional distribution of sea ice concentration, in climate models from the latest Coupled Model Intercomparison Project (CMIP5) and in satellite observations. We find substantial differences in concentration values between different sets of satellite observations, particularly at high concentrations, requiring careful treatment when comparing to models. As a fraction of total sea ice extent, models simulate too much loose, low-concentration sea ice cover throughout the year, and too little compact, high-concentration cover in the summer. In spite of the differences in physics between models, these tendencies are broadly consistent across the population of 40 CMIP5 simulations, a result not previously highlighted. Separating models with and without an explicit lateral melt term, we find that inclusion of lateral melt may account for overestimation of low-concentration cover. Targeted model experiments with a coupled ocean–sea ice model show that choice of constant floe diameter in the lateral melt scheme can also impact representation of loose ice. This suggests that current sea ice thermodynamics contribute to the inadequate simulation of the low-concentration regime in many models. [ABSTRACT FROM AUTHOR]
- Published
- 2018
- Full Text
- View/download PDF
5. Large-Scale Forcing of the Amundsen Sea Low and Its Influence on Sea Ice and West Antarctic Temperature.
- Author
-
Clem, Kyle R., Renwick, James A., and McGregor, James
- Subjects
- *
SEA ice , *TEMPERATURE , *CLIMATE change , *ANTARCTIC oscillation , *ATMOSPHERIC circulation - Abstract
Using empirical orthogonal function (EOF) analysis and atmospheric reanalyses, the principal patterns of seasonal West Antarctic surface air temperature (SAT) and their connection to sea ice and the Amundsen Sea low (ASL) are examined. During austral summer, the leading EOF (EOF1) explains 35% of West Antarctic SAT variability and consists of a widespread SAT anomaly over the continent linked to persistent sea ice concentration anomalies over the Ross and Amundsen Seas from the previous spring. Outside of summer, EOF1 (explaining ~40%-50% of the variability) consists of an east-west dipole over the continent with SAT anomalies over the Antarctic Peninsula opposite those over western West Antarctica. The dipole is tied to variability in the southern annular mode (SAM) and in-phase El Niño-Southern Oscillation (ENSO)/SAM combinations that influence the depth of the ASL over the central Amundsen Sea (near 105°W). The second EOF (EOF2) during autumn, winter, and spring (explaining ~15%-20% of the variability) consists of a dipole shifted approximately 30° west of EOF1 with a widespread SAT anomaly over the continent. During winter and spring, EOF2 is closely tied to variability in ENSO and a tropically forced wave train that influences the ASL in the western Amundsen/eastern Ross Seas (near 135°W) with an opposite-sign circulation anomaly over the Weddell Sea; the ENSO-related circulation brings anomalous thermal advection deep onto the continent. The authors conclude that the ENSO-only circulation pattern is associated with SAT variability across interior West Antarctica, especially during winter and spring, whereas the SAM circulation pattern is associated with an SAT dipole over the continent. [ABSTRACT FROM AUTHOR]
- Published
- 2017
- Full Text
- View/download PDF
6. Aspects of intraseasonal variability of Antarctic sea ice in austral winter related to ENSO and SAM events.
- Author
-
BABA, KENJI and RENWICK, JAMES
- Subjects
SEA ice ,ATMOSPHERIC temperature ,EL Nino - Abstract
We performed an Empirical Orthogonal Function (EOF) analysis to assess the intraseasonal variability of 5–60 day band-pass filtered Antarctic sea-ice concentration in austral winter using a 20-year daily dataset from 1995 to 2014. Zonal wave number 3 dominated in the Antarctic, especially so across the west Antarctic. Results showed the coexistence of stationary and propagating wave components. A spectral analysis of the first two principal components (PCs) showed a similar structure for periods up to 15 days but generally more power in PC1 at longer periods. Regression analysis upon atmospheric fields using the first two PCs of sea-ice concentration showed a coherent wave number 3 pattern. The spatial phase delay between the sea-ice and mean sea-level pressure patterns suggests that meridional flow and associated temperature advection are important for modulating the sea-ice field. EOF analyses carried out separately for El Niño, La Niña and neutral years, and for Southern Annular Mode positive, negative and neutral periods, suggest that the spatial patterns of wave number 3 shift between subsets. The results also indicate that El Niño-Southern Oscillation and Southern Annular Mode affect stationary wave interactions between sea-ice and atmospheric fields on intraseasonal timescales. [ABSTRACT FROM PUBLISHER]
- Published
- 2017
- Full Text
- View/download PDF
7. Synoptic Weather Types for the Ross Sea Region, Antarctica.
- Author
-
Cohen, Lana, Dean, Sam, and Renwick, James
- Subjects
EARTH temperature ,CLIMATE change ,METEOROLOGICAL precipitation ,ATMOSPHERIC circulation - Abstract
Synoptic classifications over the Southern Ocean in the Ross Sea region of Antarctica (50°S-Antarctic coast, 150°E-90°W) have been derived from NCEP reanalysis data (1979-2011), producing a set of six synoptic types for the region. These types describe realistic synoptic conditions for the region and represent the moisture-bearing low pressure systems that circulate around Antarctica. The types are described as follows: low Bellingshausen/Amundsen (L-BA), low (L), zonal (Z), low Ross (L-R), ridge (R), and low Amundsen (L-A). Seasonal frequencies of the synoptic types reflect the seasonal zonal shift of the Amundsen Sea low (ASL) and also correlate well with the Southern Oscillation index (SOI) and the southern annular mode (SAM). Variability in the occurrences of the synoptic types L-R and L-BA indicate a shifting of the position of the ASL farther east (west) toward (away from) the Antarctic Peninsula during La Niña (El Niño) and positive (negative) SAM conditions. A joint linear regression of the SOI and SAM indices show the strongest correlations with the types L-BA and L-R in the spring and quantifies the joint forcing effect of these climate cycles on synoptic variability in the region. As a demonstration of how synoptic classification provides links between large-scale atmospheric circulation and local climate parameters, the synoptic types are related to precipitation and temperature at Roosevelt Island, an ice core site on the Ross Ice Shelf (80°S, 160°W). The synoptic types provide quantification of distinct precipitation and temperature regimes at this site, which allows for more fundamental understanding of the precipitation source regions and transport pathways that drive the variability in snow and ice proxies. [ABSTRACT FROM AUTHOR]
- Published
- 2013
- Full Text
- View/download PDF
8. Seasonal Zonal Asymmetries in the Southern Annular Mode and Their Impact on Regional Temperature Anomalies.
- Author
-
Fogt, Ryan L., Jones, Julie M., and Renwick, James
- Subjects
ORTHOGONAL functions ,CLIMATE change ,ATMOSPHERIC models - Abstract
The Southern Hemisphere annular mode (SAM) is the dominant mode of climate variability in the extratropical Southern Hemisphere. Representing variations in pressure and the corresponding changes to the circumpolar zonal flow, it is typically thought of as an 'annular' or ringlike structure. However, on seasonal time scales the zonal symmetry observed in the SAM in monthly or annual mean data is much less marked. This study further examines the seasonal changes in the SAM structure and explores temperature signals across the Southern Hemisphere that are strongly tied to the asymmetric SAM structure. The SAM asymmetries are most marked in the Pacific sector and in austral winter and spring, related to changes in the jet entrance and exit regions poleward of 30°S. Depending on the season, the asymmetric SAM structure explains over 25% of the variance in the overall SAM structure and has strong connections with ENSO or zonal wavenumber 3. In austral summer and autumn the SAM has been becoming more zonally symmetric, especially after 1980, perhaps tied to changes in anthropogenic forcing. Across the Pacific sector, including the Antarctic Peninsula, temperature variations are strongly tied to the asymmetric SAM structure, while temperatures across East Antarctica are more strongly tied to the zonally symmetric SAM structure. The results suggest that studies examining the climate impacts of the SAM across the Southern Hemisphere need to consider the seasonal variations in the SAM structure as well as varying impacts between its positive and negative polarity to adequately describe the underlying relationships. [ABSTRACT FROM AUTHOR]
- Published
- 2012
- Full Text
- View/download PDF
9. Atmospheric Forcing of Antarctic Sea Ice on Intraseasonal Time Scales.
- Author
-
Renwick, James A., Kohout, Alison, and Dean, Sam
- Subjects
- *
SEA ice , *ATMOSPHERIC circulation , *PRECIPITATION anomalies - Abstract
Intraseasonal relationships between Antarctic sea ice and atmospheric circulation have been investigated using a 29-yr record of pentad-mean Antarctic sea ice concentration and Southern Hemisphere 500-hPa height fields. Analyses were carried Out for four sea ice seasons: minimum extent, growth, maximum extent, and decay. interannual variability was removed from both datasets to focus on intraseasonal variations. Patterns of sea ice variability and linkages to the atmospheric circulation varied markedly with season. The strongest and most coherent relationships were evident during the maximum ice extent period and to a lesser degree during the growth period. At those times of year, the strongest relationships were associated with atmospheric circulation anomalies leading sea ice anomalies by 4 or 5 days, suggesting that variations in the atmospheric circulation force changes in the sea ice field. Ice decreases are generally found in regions of poleward flow and ice increases are found in regions of equatorward flow. Mechanisms appear to be related both to thermal advection and to mechanical forcing, with the relative importance of each varying in space and in time. During the period of maximum ice extent, the leading pattern from a maximum covariance analysis between 500-hPa height and sea ice concentration accounted for 38% of the squared covariance between fields, and the associated time series were correlated at 0.74. The leading patterns of variability exhibit clear zonal wavenumber 3 signatures and appear to be largely a result of internal variability in the extratropical circulation. [ABSTRACT FROM AUTHOR]
- Published
- 2012
- Full Text
- View/download PDF
Catalog
Discovery Service for Jio Institute Digital Library
For full access to our library's resources, please sign in.