1. Optimization of Culture Medium for the Production of an Exopolysaccharide (p-CY02) with Cryoprotective Activity by Pseudoalteromonas sp. RosPo-2 from the Antarctic Sea.
- Author
-
Kang P, Kim SJ, Park HJ, Kim IC, Han SJ, and Yim JH
- Subjects
- Antarctic Regions, Humans, Dimethyl Sulfoxide pharmacology, Dimethyl Sulfoxide metabolism, HaCaT Cells, Cell Line, Seawater microbiology, Pseudoalteromonas metabolism, Polysaccharides, Bacterial pharmacology, Polysaccharides, Bacterial biosynthesis, Polysaccharides, Bacterial metabolism, Cryoprotective Agents pharmacology, Cryoprotective Agents metabolism, Culture Media chemistry, Cell Survival drug effects
- Abstract
When cells are exposed to freezing temperatures, high concentrations of cryoprotective agents (CPA) prevent ice crystal formation, thus enhancing cell survival. However, high concentrations of CPAs can also cause cell toxicity. Exopolysaccharides (EPSs) from polar marine environments exhibit lower toxicity and display effects similar to traditional CPA. In this study, we sought to address these issues by i) selecting strains that produce EPS with novel cryoprotective activity, and ii) optimizing culture conditions for EPS production. Sixty-six bacteria producing mucous substances were isolated from the Ross Sea (Antarctic Ocean) using solid marine agar plates. Among them, Pseudoalteromonas sp. RosPo-2 was ultimately selected based on the rheological properties of the produced EPS (p-CY02). Cryoprotective activity experiments demonstrated that p-CY02 exhibited significantly cryoprotective activity at a concentration of 0.8% (w/v) on mammalian cells (HaCaT). This activity was further improved when combined with various concentrations of dimethyl sulfoxide (DMSO) compared to using DMSO alone. Moreover, the survival rate of HaCaT cells treated with 5% (v/v) DMSO and 0.8% (w/v) p-CY02 was measured at 87.9 ± 2.8% after freezing treatment. This suggests that p-CY02 may be developed as a more effective, less toxic, and novel non-permeating CPA. To enhance the production of EPS with cryoprotective activity, Response Surface Methodology (RSM) was implemented, resulting in a 1.64-fold increase in production of EPS with cryoprotective activity.
- Published
- 2024
- Full Text
- View/download PDF