1. Biogenic Synthesis of Copper Nanoparticles Using Bacterial Strains Isolated from an Antarctic Consortium Associated to a Psychrophilic Marine Ciliate: Characterization and Potential Application as Antimicrobial Agents.
- Author
-
John MS, Nagoth JA, Zannotti M, Giovannetti R, Mancini A, Ramasamy KP, Miceli C, and Pucciarelli S
- Subjects
- Antarctic Regions, Bacteria drug effects, Bacteria growth & development, Dynamic Light Scattering, Fungi drug effects, Gram-Negative Bacteria drug effects, Gram-Positive Bacteria drug effects, Green Chemistry Technology, Microscopy, Electron, Transmission, Spectrophotometry, Ultraviolet, Spectroscopy, Fourier Transform Infrared, X-Ray Diffraction, Anti-Infective Agents pharmacology, Azo Compounds chemistry, Azo Compounds pharmacology, Bacteria metabolism, Copper chemistry, Metal Nanoparticles chemistry, Metal Nanoparticles microbiology
- Abstract
In the last decade, metal nanoparticles (NPs) have gained significant interest in the field of biotechnology due to their unique physiochemical properties and potential uses in a wide range of applications. Metal NP synthesis using microorganisms has emerged as an eco-friendly, clean, and viable strategy alternative to chemical and physical approaches. Herein, an original and efficient route for the microbial synthesis of copper NPs using bacterial strains newly isolated from an Antarctic consortium is described. UV-visible spectra of the NPs showed a maximum absorbance in the range of 380-385 nm. Transmission electron microscopy analysis showed that these NPs are all monodispersed, spherical in nature, and well segregated without any agglomeration and with an average size of 30 nm. X-ray powder diffraction showed a polycrystalline nature and face centered cubic lattice and revealed characteristic diffraction peaks indicating the formation of CuONPs. Fourier-transform infrared spectra confirmed the presence of capping proteins on the NP surface that act as stabilizers. All CuONPs manifested antimicrobial activity against various types of Gram-negative; Gram-positive bacteria; and fungi pathogen microorganisms including Escherichia coli , Staphylococcus aureus , and Candida albicans . The cost-effective and eco-friendly biosynthesis of these CuONPs make them particularly attractive in several application from nanotechnology to biomedical science.
- Published
- 2021
- Full Text
- View/download PDF