1. Spatiotemporal Drivers of Hydrochemical Variability in a Tropical Glacierized Watershed in the Andes.
- Author
-
Saberi, Leila, Crystal Ng, G.‐H., Nelson, Leah, Zhi, Wei, Li, Li, La Frenierre, Jeff, and Johnstone, Morgan
- Subjects
WATERSHEDS ,VOLCANIC soils ,GROUNDWATER flow ,GEOCHEMICAL cycles ,HYDROLOGIC models ,KNOWLEDGE gap theory - Abstract
There is a critical knowledge gap about how glacier retreat in remote and rapidly warming tropical montane watersheds will impact solute export, which has implications for downstream geochemical cycling and ecological function. Because tropical glacierized watersheds are often uniquely characterized by year‐round ablation, upslope vegetation migration, and significant groundwater flow, baseline understanding is needed of how spatiotemporal variables within these watersheds control outlet hydrochemistry. We implemented a recently developed reactive transport watershed model, BioRT‐Flux‐PIHM, for a sub‐humid glacierized watershed in the Ecuadorian Andes with young volcanic soils and fractured bedrock. We found a unique simulated concentration and discharge (C‐Q) pattern that was mostly chemostatic but superimposed by dilution episodes. The chemostatic background was attributed to large simulated contributions of groundwater (subsurface lateral flow) to streamflow, of which a notable fraction (37%) comprised infiltrated ice‐melt. Relatively constant concentrations were further maintained in the model because times and locations of lower mineral surface wetting and dissolution were offset by concentrating effects of greater evapotranspiration. Ice‐melt did not all infiltrate in simulations, especially during large precipitation events, when high surface runoff contributions to discharge triggered dilution episodes. In a model scenario without ice‐melt, major ion concentrations, including Na+, Ca2+, and Mg2+, became more strongly chemostatic and higher, but weathering rates decreased, attenuating export by 23%. We expect this reduction to be exacerbated by higher evapotranspiration and drier conditions with expanded vegetation. This work brings to light the importance of subsurface meltwater flow, ecohydrological variability, and interactions between melt and precipitation for controlling hydrochemical processes in tropical watersheds with rapidly retreating glaciers. Key Points: Integrated hydrologic model with reactive transport can probe spatiotemporally variable hydrochemical processes in data‐sparse watershedUnique C‐Q pattern due to infiltrated ice‐melt, weathering with groundwater, vegetation‐driven ET, and melt + precipitation dilution eventsAs glaciers fully retreat, concentrations increase and become more chemostatic, but solute export decreases due to lower stream discharge [ABSTRACT FROM AUTHOR]
- Published
- 2021
- Full Text
- View/download PDF