1. Gas geochemistry of the Mobile Bay Jurassic Norphlet Formation: Thermal controls and implications for reservoir connectivity.
- Author
-
Mankiewicz, Paul J., Pottorf, Robert J., Kozar, Michael G., and Vrolijk, Peter
- Subjects
GAS fields ,GEOCHEMISTRY ,JURASSIC stratigraphic geology ,SANDSTONE ,HYDROCARBONS ,NORPHLET Formation - Abstract
The Mobile Bay gas field is located offshore Alabama in the northern Gulf of Mexico. Production is from eolian dunes of the Jurassic Norphlet sandstone at depths exceeding 6100 m (>20,000 ft) and temperatures greater than 200°C. Reservoir connectivity and compositional variation, including the distribution of nonhydrocarbon gases (H
2 S and CO2 ), are critical factors in production strategy. To evaluate the controls on compositional variation and connectivity, detailed molecular and isotopic analyses were conducted for 29 wells. Analysis of volatiles in fluid inclusions suggests that the field was originally filled with oil that subsequently cracked to gas. In addition to the thermal destruction (cracking) of oil, the process of thermochemical sulfate reduction (TSR) continues to destroy the remaining hydrocarbons through oxidation of gas and reduction of sulfate to form H2 S and CO2 . The variable extent of the TSR process at Mobile Bay results in a wide range of hydrocarbon and H2 S compositions. Condensates are almost exclusively composed of diamondoids whose composition appears controlled by H2 S concentrations. In contrast to hydrocarbon and H2 S contents, CO2 concentrations are relatively constant throughout the field. Carbon isotopic ratios for CO2 correlate positively with those for wet-gas hydrocarbons but are heavier than expected for CO2 originating from hydrocarbon oxidation via TSR. The narrow range of CO2 contents and heavy isotope ratios suggests that CO2 is regulated by water-rock equilibration and carbonate precipitation. The destruction of the hydrocarbon gas and mineralization of the carbon dioxide product create a volume reduction and an associated drop in reservoir pressure. This process creates several internal sinks (or exits) that may control the spill direction for gas in the field. [ABSTRACT FROM AUTHOR]- Published
- 2009
- Full Text
- View/download PDF