14 results on '"Bandler, S"'
Search Results
2. Characterization of a Prototype TES-Based Anti-coincidence Detector for Use with Future X-ray Calorimeter Arrays
- Author
-
Busch, S. E., Yoon, W. S., Adams, J. S., Bailey, C. N., Bandler, S. R., Chervenak, J. A., Eckart, M. E., Ewin, A. J., Finkbeiner, F. M., Kelley, R. L., Kilbourne, C. A., Lee, S.-J., Porst, J.-P., Porter, F. S., Sadleir, J. E., Smith, S. J., and Sultana, M.
- Published
- 2016
- Full Text
- View/download PDF
3. High Count-Rate Studies of Small-Pitch Transition-Edge Sensor X-ray Microcalorimeters
- Author
-
Lee, S. J., Bandler, S. R., Busch, S. E., Adams, J. S., Chervenak, J. A., Eckart, M. E., Ewin, A. J., Finkbeiner, F. M., Kelley, R. L., Kilbourne, C. A., Porst, J.-P., Porter, F. S., Sadleir, J. E., Smith, S. J., and Wassel, E. J.
- Published
- 2014
- Full Text
- View/download PDF
4. Development of an End-to-End Demonstration Readout Chain for Athena/X-IFU.
- Author
-
Beaumont, S., Pajot, F., Roudil, G., Adams, J. S., Bandler, S. R., Bertrand, B., Betancourt-Martinez, G., Castellani, F., Chervenak, J. A., Daniel, C., Denison, E. V., Doriese, W. B., Dupieux, M., Durkin, M., Geoffray, H., Hilton, G. C., Parot, Y., Peille, P., Prêle, D., and Ravera, L.
- Subjects
DIGITAL electronics ,SPACE flight ,X-ray spectroscopy ,SPATIAL resolution ,SENSOR arrays - Abstract
The X-ray Integral Field Unit (X-IFU) of the Athena observatory, scheduled for launch in the mid 2030's, will provide X-ray spectroscopy data with unprecedented spectral and spatial resolution. This will be achieved with a 2 kilo-pixel array of transition-edge sensor (TES) microcalorimeters. The complete detection chain is under development by a large international collaboration. In order to perform an end-to-end demonstration of the X-IFU readout chain, a 50 mK test bench is being developed at IRAP in collaboration with CNES. The test bench uses a two-stage ADR cryostat from Entropy GmbH, a 1024-pixel array, and will initially be operated using a warm electronics chain from NIST and NASA Goddard Space Flight Center. We describe the complete system being installed in the cryostat and the current results obtained with these electronics. We also review the status of the integration of the digital readout electronics (DRE) prototype into the demonstration chain and the plan for integrating and testing the complete X-IFU readout chain. [ABSTRACT FROM AUTHOR]
- Published
- 2022
- Full Text
- View/download PDF
5. Various Optimizations of TES Arrays for X-Ray Astrophysics
- Author
-
Kilbourne, C. A., Bandler, S. R., Brown, A.-D., Chervenak, J. A., Figueroa-Feliciano, E., Finkbeiner, F., Iyomoto, N., Kelley, R. L., Porter, F. S., and Smith, S. J.
- Published
- 2008
- Full Text
- View/download PDF
6. Heat Sinking and Crosstalk for Large, Close-Packed Arrays of Microcalorimeters
- Author
-
Iyomoto, N., Bandler, S. R., Brekosky, R. P., Brown, A.-D., Chervenak, J. A., Figueroa-Feliciano, E., Finkbeiner, F. M., Kelley, R. L., Kilbourne, C. A., Porter, F. S., Sadleir, J. E., and Smith, S. J.
- Published
- 2008
- Full Text
- View/download PDF
7. Modeling of TES X-Ray Microcalorimeters with a Novel Absorber Design
- Author
-
Iyomoto, N., Bandler, S. R., Brekosky, R. P., Brown, A.-D., Chervenak, J. A., Figueroa-Feliciano, E., Finkbeiner, F. M., Kelley, R. L., Kilbourne, C. A., Lindeman, M. A., Porter, F. S., Saab, T., Sadleir, J. E., and Smith, S. J.
- Published
- 2008
- Full Text
- View/download PDF
8. Performance of Micro-fabricated Magnetic Calorimeters Arrays for X-Ray Spectroscopy
- Author
-
Rotzinger, H., Adams, J., Bandler, S. R., Beyer, J., Eguchi, H., Figueroa-Feliciano, E., Hsieh, W., Seidel, G. M., and Stevenson, T.
- Published
- 2008
- Full Text
- View/download PDF
9. Determining the thermal diffusivity in microcalorimeter absorbers and its effect on detector response.
- Author
-
Saab, T., Figueroa-Feliciano, E., Iyomoto, N., Bandler, S. R., Chervenak, J. A., Kelley, R. L., Kilbourne, C. A., Porter, F. S., and Sadleir, J. E.
- Subjects
THERMAL diffusivity ,CALORIMETERS ,X-rays in industry ,HEAT sinks (Electronics) ,DETECTORS ,GAUSSIAN processes ,X-ray spectroscopy - Abstract
An x-ray microcalorimeter consists of an absorber and a thermometer connected to each other, and to a heat sink, via well defined thermal conductances. The standard theoretical derivation of energy resolution treats the absorber and thermometer as point elements that are internally isothermal. In reality, the finite size and internal diffusivity of the absorber and thermometer prevents these elements from instantly achieving a uniform temperature, leading to a variation in observed pulse shapes as a function of the interaction’s position within the absorber. These variations result in a distortion of the detector response and a subsequent degradation of the energy resolution. This paper presents diffusivity measurements for x-ray microcalorimeters fabricated at the NASA/GSFC. Using a diffusion model we developed, we show quantitatively how a 2 eV Gaussian response is distorted into a non-Gaussian profile roughly 12 eV wide at an energy of 6 keV for an absorber diffusivity of 10
4 μm2 /μs. We then present a method for eliminating the effect of pulse shape variation on the detector energy response with a modified optimal filter approach. [ABSTRACT FROM AUTHOR]- Published
- 2007
- Full Text
- View/download PDF
10. Real-Time Data Processing for X-Ray Spectroscopy.
- Author
-
Adams, J. S., Bandler, S. R., Brown, L. E., Boyce, K. R., Chiao, M. P., Doriese, W. B., Eckart, M. E., Hilton, G. C., Kelley, R. L., Kilbourne, C. A., Porter, F. S., Rabin, M. W., Smith, S. J., Stewart, D. D., and Ullom, J. N.
- Subjects
- *
X-ray spectroscopy , *REAL-time computing , *DIGITAL communications , *DATA transmission systems , *DIGITAL signal processing , *DIGITAL electronics equipment - Abstract
Over the last decade, the field of x-ray calorimeters has matured to the point where calorimeter instruments are becoming more common, requiring the development of turnkey systems that are easy to use for non-expert operators. In addition, the use of large arrays in spaceflight instruments requires a significant reduction in data density in order to remain compatible with highly restricted telemetry bandwidths. As calorimeter instruments mature and find wider use outside of the laboratory, the ability to perform signal analysis and data reduction on the raw data stream in real-time has gone from a convenience to a necessity. We will report on the adaptation of the Digital Signal Processor (DSP) based analysis electronics originally developed for the 32 channel Astro-E and Astro-E2 satellite missions to a full software version implemented with off-the-shelf hardware. This implementation requires a minimum of human intervention and is capable of real-time data analysis of x-ray events on many channels simultaneously, including triggering, optimal filtering and pulse height analysis. This suite has been successfully deployed in the XRS/EBIT and the EBIT/ECS experiments at Lawrence Livermore Laboratory and has been operational for over five years. We are currently scaling this system to much larger arrays as a test-bed for the XMS instrument on the International X-Ray Observatory (IXO) and for ground experiments such as the gamma-ray spectrometer at Los Alamos National Laboratory. [ABSTRACT FROM AUTHOR]
- Published
- 2009
- Full Text
- View/download PDF
11. Large-Absorber TES X-ray Microcalorimeters and the Micro-X Detector Array.
- Author
-
Eckart, M. E., Adams, J. S., Bandler, S. R., Brekosky, R. P., Brown, A.-D., Chervenak, J. A., Ewin, A. J., Finkbeiner, F. M., Kelley, R. L., Kilbourne, C. A., Porter, F. S., Sadleir, J. E., Smith, S. J., Figueroa-Feliciano, E., and Wikus, P.
- Subjects
X-rays ,CALORIMETERS ,SPECTROMETERS ,DETECTORS ,PIXELS - Abstract
We present experimental results and designs of large-absorber transition-edge-sensor (TES) X-ray microcalorimeters. Much of our effort has focused on developing close-packed arrays of 250–300 μm-sized pixels suitable for the X-ray Microcalorimeter Spectrometer (XMS) on the International X-ray Observatory. These efforts have produced devices with the requisite energy resolution of >=2.5 eV (FWHM) at 6 keV. There are several upcoming applications, however, that require arrays composed of significantly larger pixels. In this contribution we present experimental results from 490 μm-sized pixels that have attained 3.5 eV energy resolution at 6 keV. These devices are precursors to the pixels that are being developed for the XMS extended array. In addition, we briefly describe detector designs for the Micro-X sounding rocket experiment, which also requires an array of large-area TES microcalorimeters. [ABSTRACT FROM AUTHOR]
- Published
- 2009
- Full Text
- View/download PDF
12. Heat Sinking, Crosstalk, and Temperature Uniformity for Large Close-Packed Microcalorimeter Arrays.
- Author
-
lyomoto, N., Bandler, S. R., Brekosky, R. P., Brown, A.-D., Chervenak, J. A., Eckart, M. E., Finkbeiner, F. M., Kelley, R. L., Kilbourne, C. A., Porter, F. S., Sadleir, J. E., and Smith, S. J.
- Subjects
- *
HEAT sinks (Electronics) , *CROSSTALK , *CALORIMETERS , *OPTICAL resolution , *DETECTORS , *X-ray spectroscopy - Abstract
In a large close-packed array of x-ray microcalorimeters, sufficient heat sinking is important to minimize thermal crosstalk between pixels and to make the bath temperature of all the pixels uniform. We have measured crosstalk in our 8 x 8 pixel arrays. The shapes of the thermal crosstalk pulses are reproduced well as a convolution of heat input from the source pixel and the thermal decay in the receiver pixel. The amount of the thermal crosstalk is clearly dependent on the degree of electrothermal feedback. We have compared the magnitude of thermal crosstalk with and without a heat-sinking copper layer on the backside of the silicon frame as a function of distance between the source and receiver pixels. Using the results obtained, we have estimated the degradation of energy resolution that is expected as a function of count rate. We have also studied the temperature distribution within an array due to continuous heating from the TES bias to estimate impacts on the uniformity of the pixel performance. [ABSTRACT FROM AUTHOR]
- Published
- 2009
- Full Text
- View/download PDF
13. Laboratory astrophysics and microanalysis with NTD-germanium-based X-ray microcalorimeters
- Author
-
D.A. Landis, E. E. Haller, Endre Takacs, James V. Porto, John D. Gillaspy, Simon R. Bandler, G Tucker, M. Barbera, Jeffrey W. Beeman, S. S. Murray, Herbert W. Schnopper, Norman W. Madden, Eric H. Silver, Silver, E, Schnopper, H, Bandler, S, Murray, S, Madden, N, Landis, D, Beeman, J, Haller, E, Barbera, M, Tucker, G, Gillaspy, J, Takacs, E, and Porto, J
- Subjects
Physics ,Nuclear and High Energy Physics ,X-ray spectroscopy ,Astrophysics::High Energy Astrophysical Phenomena ,Resolution (electron density) ,X-ray optics ,X-ray fluorescence ,chemistry.chemical_element ,Fizikai tudományok ,Germanium ,Astrophysics ,Microanalysis ,Settore FIS/05 - Astronomia E Astrofisica ,Természettudományok ,chemistry ,Astrophysical plasma ,Instrumentation ,Electron beam ion trap - Abstract
With the ability to create cosmic plasma conditions in the laboratory it is possible to investigate the dependencies of key diagnostic X-ray lines on density, temperature, and excitation conditions that exist in astrophysical sources with X-ray optics and a high-resolution X-ray microcalorimeter. The same instrumentation can be coupled to scanning electron microscopes or X-ray fluorescence probes to analyze the elemental and chemical composition of electronic, biological, geological and particulate materials. We describe how our microcalorimeter and X-ray optics provide significantly improved capabilities for laboratory astrophysics and microanalysis.
- Published
- 2000
- Full Text
- View/download PDF
14. The Athena X-ray Integral Field Unit (X-IFU)
- Author
-
Mauro Dadina, Enrico Bozzo, Jeremie Hassin, Jacco Vink, Gonzalo Campos Garrido, Isabelle Hernandez, Jan-Willem den Herder, Natalie A. Webb, Yaël Nazé, Roland den Hartog, Bert-Joost van Leeuwen, Marco Barbera, Beatriz Cobo, Simone Lotti, Denis Schwander, Alice Pradines, Fabrizio Nicastro, Hervé Geoffray, Andrea Goldwurm, Damien Prêle, Etienne Pointecouteau, Stéphane Paltani, Agnieszka Janiuk, Jean-Michel Mesnager, Stephen J. Smith, Michel Le Du, María Teresa Ceballos, Jean-Marc Biffi, Kazuhisa Mitsuda, Alexis Finoguenov, Graziella Branduardi-Raymont, Luca Valenziano, Ivan Charles, Peter G. Jonker, Didier Barret, Gabriel W. Pratt, Keisuke Shinozaki, François Pajot, Juhani Huovelin, Noriko Y. Yamasaki, Thomas Dauser, L. Ravera, Kevin R. Boyce, J. M. Duval, Mariano Mendez, Silvano Molendi, Jelle de Plaa, Joop Schaye, Christophe Etcheverry, Antoine Clénet, Jean-Charles Damery, Xavier Barcons, Frederick S. Porter, Richard L. Kelley, Thein Lam Trong, Irwin Maussang, Pierre Jamotton, Luigi Piro, Françoise Delcelier-Douchin, Alexis Paillet, Brian Jackson, Henk van Weers, Anne Decourchelle, Flavio Gatti, Philippe Peille, Fabrizio Fiore, Simon R. Bandler, Johan Panh, Salvatore Sciortino, Gregor Rauw, Agata Różańska, Caroline A. Kilbourne, Jerome Moueza, Jose Miguel Torrejon, Gilles Hervet, Jon M. Miller, Joern Wilms, Christophe Daniel, Yasushi Fukazawa, Bruno Vella, Michael J. DiPirro, Piotr Orleanski, Claudio Macculi, Laure Luno, J. Miguel Mas-Hesse, C. Panem, Edoardo Cucchetti, Jérôme André, Emilie Gloaguen, T. Brand, Etienne Renotte, Ministerio de Economía y Competitividad (España), European Commission, Astronomy, AstroParticule et Cosmologie (APC (UMR_7164)), Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Institut National de Physique Nucléaire et de Physique des Particules du CNRS (IN2P3)-Observatoire de Paris, Université Paris sciences et lettres (PSL)-Université Paris sciences et lettres (PSL)-Centre National de la Recherche Scientifique (CNRS)-Université Paris Cité (UPCité), Herder, J.-W. den, Institut National de Physique Nucléaire et de Physique des Particules du CNRS (IN2P3)-Centre National de la Recherche Scientifique (CNRS)-Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Observatoire de Paris, PSL Research University (PSL)-PSL Research University (PSL)-Université Paris Diderot - Paris 7 (UPD7), Université Paris sciences et lettres (PSL)-Université Paris sciences et lettres (PSL)-Centre National de la Recherche Scientifique (CNRS)-Université de Paris (UP), Observatoire de Paris, PSL Research University (PSL)-PSL Research University (PSL)-Université Paris Diderot - Paris 7 (UPD7)-Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Institut National de Physique Nucléaire et de Physique des Particules du CNRS (IN2P3)-Centre National de la Recherche Scientifique (CNRS), AstroParticule et Cosmologie ( APC - UMR 7164 ), Centre National de la Recherche Scientifique ( CNRS ) -Institut National de Physique Nucléaire et de Physique des Particules du CNRS ( IN2P3 ) -Observatoire de Paris-Université Paris Diderot - Paris 7 ( UPD7 ) -Commissariat à l'énergie atomique et aux énergies alternatives ( CEA ), Gravitation and Astroparticle Physics Amsterdam, API (FNWI), Barret, D., Lam Trong, T., den Herder, J., Piro, L., Barcons, X., Huovelin, J., Kelley, R., Mas-Hesse, J., Mitsuda, K., Paltani, S., Rauw, G., Rożanska, A., Wilms, J., Barbera, M., Bozzo, E., Ceballos, M., Charles, I., Decourchelle, A., den Hartog, R., Duval, J., Fiore, F., Gatti, F., Goldwurm, A., Jackson, B., Jonker, P., Kilbourne, C., Macculi, C., Mendez, M., Molendi, S., Orleanski, P., Pajot, F., Pointecouteau, E., Porter, F., Pratt, G., Prêle, D., Ravera, L., Renotte, E., Schaye, J., Shinozaki, K., Valenziano, L., Vink, J., Webb, N., Yamasaki, N., Delcelier-Douchin, F., Le Du, M., Mesnager, J., Pradines, A., Branduardi-Raymont, G., Dadina, M., Finoguenov, A., Fukazawa, Y., Janiuk, A., Miller, J., Nazé, Y., Nicastro, F., Sciortino, S., Torrejon, J., Geoffray, H., Hernandez, I., Luno, L., Peille, P., André, J., Daniel, C., Etcheverry, C., Gloaguen, E., Hassin, J., Hervet, G., Maussang, I., Moueza, J., Paillet, A., Vella, B., Campos Garrido, G., Damery, J., Panem, C., Panh, J., Bandler, S., Biffi, J., Boyce, K., Clénet, A., Dipirro, M., Jamotton, P., Lotti, S., Schwander, D., Smith, S., van Leeuwen, B., van Weers, H., Brand, T., Cobo, B., Dauser, T., de Plaa, J., and Cucchetti, E.
- Subjects
Computer science ,[ PHYS.ASTR ] Physics [physics]/Astrophysics [astro-ph] ,Astronomy ,Observatories ,Field of view ,Athena ,Instrumentation ,Space telescopes ,X-ray Integral Field Unit ,X-ray spectroscopy ,Electronic, Optical and Magnetic Materials ,Condensed Matter Physics ,Computer Science Applications1707 Computer Vision and Pattern Recognition ,Applied Mathematics ,Electrical and Electronic Engineering ,7. Clean energy ,01 natural sciences ,law.invention ,Settore FIS/05 - Astronomia E Astrofisica ,law ,Observatory ,Athena, Instrumentation, Space telescopes, X-ray spectroscopy, X-ray Integral Field Unit ,010303 astronomy & astrophysics ,[ PHYS.PHYS.PHYS-INS-DET ] Physics [physics]/Physics [physics]/Instrumentation and Detectors [physics.ins-det] ,Spectroscopy ,High Energy Astrophysical Phenomena (astro-ph.HE) ,Equipment and services ,X-ray ,Proceedings of SPIE - the International Society for Optical Engineering ,Astrophysics - Instrumentation and Methods for Astrophysics ,Astrophysics - High Energy Astrophysical Phenomena ,High energy astrophysics ,Astrophysics - Cosmology and Nongalactic Astrophysics ,Cosmology and Nongalactic Astrophysics (astro-ph.CO) ,Spectral resolution ,FOS: Physical sciences ,Minute of arc ,Telescope ,0103 physical sciences ,X-rays ,Electronic ,Optical and Magnetic Materials ,[PHYS.PHYS.PHYS-INS-DET]Physics [physics]/Physics [physics]/Instrumentation and Detectors [physics.ins-det] ,010306 general physics ,Instrumentation and Methods for Astrophysics (astro-ph.IM) ,Remote sensing ,Pixel ,Astrophysics - Astrophysics of Galaxies ,Astrophysics of Galaxies (astro-ph.GA) ,[PHYS.ASTR]Physics [physics]/Astrophysics [astro-ph] ,Telescopes - Abstract
Event: SPIE Astronomical Telescopes + Instrumentation, 2016, Edinburgh, United Kingdom., X-IFU: et al., The X-ray Integral Field Unit (X-IFU) on board the Advanced Telescope for High-ENergy Astrophysics (Athena) will provide spatially resolved high-resolution X-ray spectroscopy from 0.2 to 12 keV, with ~ 5" pixels over a field of view of 5 arc minute equivalent diameter and a spectral resolution of 2.5 eV up to 7 keV. In this paper, we first review the core scientific objectives of Athena, driving the main performance parameters of the X-IFU, namely the spectral resolution, the field of view, the effective area, the count rate capabilities, the instrumental background. We also illustrate the breakthrough potential of the X-IFU for some observatory science goals. Then we brie y describe the X-IFU design as defined at the time of the mission consolidation review concluded in May 2016, and report on its predicted performance. Finally, we discuss some options to improve the instrument performance while not increasing its complexity and resource demands (e.g. count rate capability, spectral resolution)., We acknowledge support from the Athena Science Study Team, the Athena Working Group Chairs, the Athena Topical Panel Chairs and the Topical Panel members in strengthening the X-IFU top level performance requirements. Particular thanks go to: E. Rasia, V. Biffi, S. Borgani and K. Dolag for providing cosmological hydrodynamic simulations of a cluster used to produce simulation of X-IFU observation presented in Fig. 2; P.T. O'Brien for assistance with Sect. 2.2.1, A.C. Fabian and C. Pinto for providing inputs for Figure 1. We also thank the ESA project team, and in particular Mark Ayre and Ivo Ferreira, for their work on the assessment of the ToO efficiency requirement. The Italian contribution to X-IFU is supported through the ASI contract n. 2015-046-R.0. XB, MTC and BC acknowledge nancial support by MINECO through grant ESP2014-53672-C3-1-P. A.R., P.O, and A.J. were supported by Polish NSC grants: 2015/17/B/ST9/03422 and 2015/18/M/ST9/00541. GR, ER, YN, and PJ acknowledges support by FNRS and Prodex (Belspo). This work was supported by the French Space Agency (CNES).
- Full Text
- View/download PDF
Catalog
Discovery Service for Jio Institute Digital Library
For full access to our library's resources, please sign in.