4 results on '"Fadel, Etimad"'
Search Results
2. An Efficient Path Planning Strategy in Mobile Sink Wireless Sensor Networks.
- Author
-
Bagais, Najla, Fadel, Etimad, and Al-Mansour, Amal
- Subjects
WIRELESS sensor networks ,END-to-end delay ,MATHEMATICAL optimization ,NETWORK performance ,INTERNET of things - Abstract
Wireless sensor networks (WSNs) are considered the backbone of the Internet of Things (IoT), which enables sensor nodes (SNs) to achieve applications similarly to human intelligence. However, integrating a WSN with the IoT is challenging and causes issues that require careful exploration. Prolonging the lifetime of a network through appropriately utilising energy consumption is among the essential challenges due to the limited resources of SNs. Thus, recent research has examined mobile sinks (MSs), which have been introduced to improve the overall efficiency of WSNs. MSs bear the burden of data collection instead of consuming energy at the routeing by SNs. In a network, some areas generate more data through SNs that contain frequent, urgent messages. These messages carry sensitive data that must be delivered immediately to user applications. Collecting such messages via MSs, especially on a large scale, increases delays, which are not tolerable in some real applications. This issue has not been studied much. Thus, the present study utilises the advantages of the priority parameter to concentrate on these areas and proposes a new model named 'energy efficient path planning of MS-based area priority' (EEPP-BAP). This method involves non-urgent and urgent messages. It is comprised of four procedures. Initially, after SNs are distributed randomly in a wide monitoring field, the monitoring field is partitioned into equal zones according to priority, either differently or equally. Next is clustering based on the cluster head (CH) selected to perform the particle swarm optimisation algorithm (PSO). Then, the MS moves first to the zones with higher priority and less distance to performthe brain stormoptimisation algorithm. Finally, for urgent messages from the other zones at which the MS continues, the proposed approach establishes a routeing technique using multi-hop communication based on the MS position and using PSO. The proposed solution is aimed at delivering urgent messages to MSs free of latency and with minimal packet loss. The simulation results proved that the EEPPBAP method can improve network performance compared with other models based on different parameters that have been used to construct the controlled movement of MSs in large-scale environments involving urgent messages. The proposed method increased the average lifetime of SNs to 206.6% on average, reduced the average end-to-end delay to 7.1%, and increased the average packet delivery ratio to 36.9%. [ABSTRACT FROM AUTHOR]
- Published
- 2022
- Full Text
- View/download PDF
3. Event-to-Sink Spectrum-Aware Clustering in Mobile Cognitive Radio Sensor Networks.
- Author
-
Ozger, Mustafa, Fadel, Etimad, and Akan, Ozgur B.
- Subjects
COGNITIVE radio ,COMPUTER network protocols ,WIRELESS sensor networks ,ENERGY consumption ,ALGORITHMS ,ROUTING (Computer network management) - Abstract
Cognitive radio sensor networks (CRSNs) are event-based systems such that sensor nodes detect events and the event readings of the sensors are collaboratively conveyed in a multi-hop manner through vacant channels from event regions to a sink. Hence, the event-to-sink communication and the dynamic radio environment require a coordination scheme in CRSNs. In this paper, we propose a spectrum-aware clustering protocol to address the event-to-sink communication coordination issue in mobile CRSNs. Our clustering scheme consists of two phases. The first phase is the determination of nodes eligible for clustering, and the second phase is to form clusters among those nodes according to vacant spectrum bands. Clusters are temporary and they are not preserved after the end of events. Furthermore, we find average re-clustering probability, expected cluster coverage area, and find maximum event generation frequency for energy-efficient operation of our protocol. We study performance of our protocol in terms of control and data packet exchange, time steps required for clustering, connectivity of clusters, energy consumed for clustering, and re-clustering ratio due to the mobility. Performance comparison simulations show that our algorithm has better performance in terms of connectivity and energy consumption. [ABSTRACT FROM PUBLISHER]
- Published
- 2016
- Full Text
- View/download PDF
4. A Spectrum-Aware Clustering for Efficient Multimedia Routing in Cognitive Radio Sensor Networks.
- Author
-
Shah, Ghalib A., Alagoz, Fatih, Fadel, Etimad A., and Akan, Ozgur B.
- Subjects
MULTIMEDIA communications ,TELECOMMUNICATION systems routing ,COGNITIVE radio ,CARRIER sense multiple access ,TIME division multiple access - Abstract
Multimedia applications are characterized as delay-sensitive and high-bandwidth stipulating traffic sources. Supporting such demanding applications on cognitive radio sensor networks (CRSNs) with energy and spectrum constraints is a highly daunting task. In this paper, we propose a spectrum-aware cluster-based energy-efficient multimedia (SCEEM) routing protocol for CRSNs that jointly overcomes the formidable limitations of energy and spectrum. Clustering is exploited to support the quality of service (QoS) and energy-efficient routing by limiting the participating nodes in route establishment. In SCEEM routing, the number of clusters is optimally determined to minimize the distortion in multimedia quality that occurs due to packet losses and latency. Moreover, the cluster-head selection is based on the energy and relative spectrum awareness such that noncontiguous available spectrum bands are clustered and scheduled to provide continuous transmission opportunity. Routing employs clustering with hybrid medium access by combining carrier-sense multiple access (CSMA) and time-division multiple access (TDMA). TDMA operates for intracluster transmission, whereas CSMA is used for intercluster routing. Thus, a cross-layer design of routing, i.e., of medium access control (MAC) and physical layers, provides efficient multimedia routing in CRSNs, which is revealed through simulation experiments. [ABSTRACT FROM PUBLISHER]
- Published
- 2014
- Full Text
- View/download PDF
Catalog
Discovery Service for Jio Institute Digital Library
For full access to our library's resources, please sign in.