1. Whole Genome Sequencing in the Evaluation of Fetal Structural Anomalies: A Parallel Test with Chromosomal Microarray Plus Whole Exome Sequencing.
- Author
-
Zhou J, Yang Z, Sun J, Liu L, Zhou X, Liu F, Xing Y, Cui S, Xiong S, Liu X, Yang Y, Wei X, Zou G, Wang Z, Wei X, Wang Y, Zhang Y, Yan S, Wu F, Zeng F, Wang J, Duan T, Peng Z, and Sun L
- Subjects
- Abnormalities, Multiple genetics, Female, Gestational Age, Humans, Pregnancy, Pregnancy Trimester, First, Prenatal Diagnosis, Prospective Studies, Abnormalities, Multiple diagnosis, Chromosomes, Human genetics, Microarray Analysis methods, Exome Sequencing methods, Whole Genome Sequencing methods
- Abstract
Whole genome sequencing (WGS) is a powerful tool for postnatal genetic diagnosis, but relevant clinical studies in the field of prenatal diagnosis are limited. The present study aimed to prospectively evaluate the utility of WGS compared with chromosomal microarray (CMA) and whole exome sequencing (WES) in the prenatal diagnosis of fetal structural anomalies. We performed trio WGS (≈40-fold) in parallel with CMA in 111 fetuses with structural or growth anomalies, and sequentially performed WES when CMA was negative (CMA plus WES). In comparison, WGS not only detected all pathogenic genetic variants in 22 diagnosed cases identified by CMA plus WES, yielding a diagnostic rate of 19.8% (22/110), but also provided additional and clinically significant information, including a case of balanced translocations and a case of intrauterine infection, which might not be detectable by CMA or WES. WGS also required less DNA (100 ng) as input and could provide a rapid turnaround time (TAT, 18 ± 6 days) compared with that (31 ± 8 days) of the CMA plus WES. Our results showed that WGS provided more comprehensive and precise genetic information with a rapid TAT and less DNA required than CMA plus WES, which enables it as an alternative prenatal diagnosis test for fetal structural anomalies.
- Published
- 2021
- Full Text
- View/download PDF