There is a need for water reuse technologies and applications to minimize the imminent water crisis, caused by the world population growth, the reduction of freshwater resources and the increasing water pollution. Fertilizer-drawn forward osmosis (FDFO) is a promising process capable of simultaneously extracting fresh water from low-quality sources as feed water (e.g., wastewater or greywater), while diluting fertilizer solutions for direct fertigation, avoiding the demand for freshwater for irrigation. Achieving an adequate level of dilution for direct fertigation is a key element to be evaluated for the implementation of FDFO. This study assessed the performance of the forward osmosis process to dilute fertilizer solutions to be applied directly in hydroponic systems. Experiments were carried out under conditions close to osmotic equilibrium to evaluate the process performance up to the maximum dilution point. Tests were carried out with individual and blended fertilizers (i.e. , (NH 4) 2 HPO 4 or DAP, and KNO 3) used as draw solution (DS) and with deionized water or individual salts (NaCl, MgCl 2 , Na 2 SO 4 , MgSO 4) in the feed solution (FS). Water fluxes and reverse salt fluxes indicated that both fertilizer DS composition and concentrations play a fundamental role in the process. Suitable nutrient concentrations to be directly applied without further dilution for N, P and K (119, 40, 264 mg.L−1 respectively) were obtained with deionized water as FS and blended DAP (0.025 M) and KNO 3 (0.15 M) as DS. However, important fertilizer losses from DS to FS were observed, being the highest for NO 3 − (33–70% losses from DS to FS). The presence of salts in FS decreased the water fluxes and the DS dilution due to the osmotic equilibrium caused by a greater loss of nutrients from DS to FS (up to 100%), compared with tests using just deionized water as FS. This study points out the potential limitations of the FDFO process, due to the high solute fluxes and low water fluxes in conditions close to osmotic equilibrium. [Display omitted] • Proper dilution for hydroponic achieved with mixed DAP and KNO 3 as DS and DI as FS. • Reverse solute fluxes led to important draw solution nutrients losses. • Salts presence in FS resulted in high reverse fluxes of NH 4 +, K+ and NO 3 − to FS. • Forward fluxes from FS to DS were minimal for all FS ions except for Na+. • Nutrient losses in osmotic equilibrium jeopardizes the potential of FDFO process. [ABSTRACT FROM AUTHOR]