1. Enhanced landfill leachate treatment performance by adsorption-assisted membrane distillation.
- Author
-
Aftab B, Yin G, Maqbool T, Hur J, and Wang J
- Subjects
- Adsorption, Distillation, Charcoal chemistry, Water Pollutants, Chemical analysis
- Abstract
Membrane fouling and high-strength membrane concentrate production are two limitations of membrane distillation (MD) for landfill leachate treatment. In this study, activated carbon- and biochar-based adsorption processes were integrated into a conventional MD system to overcome these limitations. The organic matter fractionations of the leachate were thoroughly investigated during the treatment. Membrane-reversible and irreversible foulants differed remarkably from the inlet leachate in the non-assisted MD system. Specifically, reversible foulants were characterized by a high abundance of humic-like fluorescent components, high-molecular-weight humic-size constituents, peptides, and unsaturated compounds. In contrast, irreversible foulants were enriched with fulvic-like fluorescent components, low-molecular-weight neutrals, unsaturated compounds, and polyphenols. The adsorption-based pre-treatment effectively removed foulant precursors from landfill leachate, with a relatively higher (20%) adsorption performance for specific biochar used in this study than for activated carbon. Compared with the non-assisted MD system, the biochar-assisted MD system showed improved performance, achieving 40% overall membrane flux recovery, 42% higher filtration fluxes, and 53% lower concentrate production. In addition, a 15% higher removal of irreversible foulants was observed as compared to the reversible foulants, which can potentially increase the membrane lifespan. This study demonstrates the effectiveness of an adsorption-assisted MD system supported by increased filtration, membrane fouling alleviation, and low-strength leachate concentrate generation., Competing Interests: Declaration of Competing Interest The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper., (Copyright © 2023 Elsevier Ltd. All rights reserved.)
- Published
- 2024
- Full Text
- View/download PDF