1. Production of Wild Buffalo ( Bubalus arnee) Embryos by Interspecies Somatic Cell Nuclear Transfer Using Domestic Buffalo ( Bubalus bubalis) Oocytes.
- Author
-
Priya, D, Selokar, NL, Raja, AK, Saini, M, Sahare, AA, Nala, N, Palta, P, Chauhan, MS, Manik, RS, and Singla, SK
- Subjects
WATER buffalo ,CATTLE embryos ,SOMATIC cells ,TRANSPLANTATION of cell nuclei ,OVUM ,VIMENTIN ,GENE expression ,CATTLE - Abstract
Contents The objective of this study was to explore the possibility of producing wild buffalo embryos by interspecies somatic cell nuclear transfer ( iSCNT) through handmade cloning using wild buffalo somatic cells and domestic buffalo ( Bubalus bubalis) oocytes. Somatic cells derived from the ear skin of wild buffalo were found to express vimentin but not keratin and cytokeratin-18, indicating that they were of fibroblast origin. The population doubling time of skin fibroblasts from wild buffalo was significantly (p < 0.05) higher, and the cell proliferation rate was significantly (p < 0.05) lower compared with that of skin fibroblasts from domestic buffalo. Neither the cleavage (92.6 ± 2.0% vs 92.8 ± 2.0%) nor the blastocyst rate (42.4 ± 2.4% vs 38.7 ± 2.8%) was significantly different between the intraspecies cloned embryos produced using skin fibroblasts from domestic buffalo and interspecies cloned embryos produced using skin fibroblasts from wild buffalo. However, the total cell number ( TCN) was significantly (p < 0.05) lower (192.0 ± 25.6 vs 345.7 ± 42.2), and the apoptotic index was significantly (p < 0.05) higher (15.1 ± 3.1 vs 8.0 ± 1.4) for interspecies than that for intraspecies cloned embryos. Following vitrification in open-pulled straws ( OPS) and warming, although the cryosurvival rate of both types of cloned embryos, as indicated by their re-expansion rate, was not significantly different (34.8 ± 1.5% vs 47.8 ± 7.8), the apoptotic index was significantly (p < 0.05) higher for vitrified-warmed interspecies than that for corresponding intraspecies cloned embryos (48.9 ± 7.2 vs 23.9 ± 2.8). The global level of H3 K18ac was significantly (p < 0.05) lower in interspecies cloned embryos than that in intraspecies cloned embryos. The expression level of HDAC1, DNMT3a and CASPASE3 was significantly (p < 0.05) higher, that of P53 was significantly (p < 0.05) lower in interspecies than in intraspecies embryos, whereas that of DNMT1 was similar between the two types of embryos. In conclusion, these results demonstrate that wild buffalo embryos can be produced by iSCNT. [ABSTRACT FROM AUTHOR]
- Published
- 2014
- Full Text
- View/download PDF