1. Functionalized Porous Nanoscale Fe3O4 Particles Supported Biochar From Peanut Shell For Pb(II) Ions Removal From Landscape Wastewater
- Author
-
Xiaojun Jin, Huifang Wang, Li Han, Baowei Hu, Muqing Qiu, and Renrong Liu
- Subjects
Materials science ,Wastewater ,Chemical engineering ,Health, Toxicology and Mutagenesis ,Biochar ,Shell (structure) ,Environmental Chemistry ,General Medicine ,Porosity ,Pollution ,Nanoscopic scale ,Ion - Abstract
The large amounts of heavy metal from landscape wastewater have become serious problems of environmental pollution and risks for human health. It affects the growth of plant and aquatic, and leads to the destruction of landscape. Therefore, the development of efficient novel adsorbent is a very important for treatment of heavy metal. A low-cost and easily obtained agricultural waste (Peanut Shell) was modified by nanoscale Fe3O4 particles. Then, the functionalized porous nanoscale Fe3O4 particles supported biochar from peanut shell (PS-Fe3O4) for removal of Pb(II) ions from aqueous solution was investigated. The characterization of PS-Fe3O4 composites showed that PS from peanut shell was successfully coated with porous nanoscale Fe3O4 particles. The pseudo second-order kinetic model and Langmuir model were more fitted for describing the adsorption process of Pb(II) ions in solution. The maximum adsorption capacity of Pb(II) ions removal in solution by PS-Fe3O4 composites could reach 188.68 mg/g. The adsorption process of Pb(II) ions removal by PS-Fe3O4 composites was a spontaneous and endothermic process. The adsorption mechanisms of Pb(II) ions by PS-Fe3O4 composites were mainly controlled by the chemical adsorption process. They included Fe-O coordination reaction, co-precipitation, complexation reaction and ion exchange. PS-Fe3O4 composites were thought as a low-cost, good regeneration performance and high efficiency adsorption material for removal of Pb(II) ions in solution.
- Published
- 2021