1. Effects of sudden shock load on simultaneous biohythane production in two-stage anerobic digestion of high-strength organic wastewater.
- Author
-
Wirasembada YC, Shin B, Shin J, Kurniawan A, and Cho J
- Subjects
- Anaerobiosis, Methane, Hydrogen, Digestion, Wastewater, Bioreactors
- Abstract
The two-stage anaerobic digestion (AD) for biohythane production is a sustainable solution, but it is sensitive to organic shock load that disrupts reactors and inhibits biohythane production. This study investigated biohythane production, reactor performance, and the possibility of post-failure restoration in a two-stage AD system designed for treating high-strength organic wastewater. Sudden shock load was applied by increasing the OLR threefold higher after reaching steady state phase. During shock load phase, hydrogen content, hydrogen yield and methane production rate (MPR) reached its peak values of 62.61 %, 1.641 mol H
2 /mol glucose, and 1.003 L CH4 /L⋅d respectively before declining significantly. Interestingly, during the restorative phase, hydrogen production sharply declined to nearly zero, while methane production exhibited a resilience and reached its peak methane content of 52.2 %. The study successfully demonstrated the system's resilience to sudden shock load, ensuring stable methane production, while hydrogen production did not exhibit the same capability., Competing Interests: Declaration of competing interest The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper., (Copyright © 2023 Elsevier Ltd. All rights reserved.)- Published
- 2024
- Full Text
- View/download PDF