1. A central processing sensory deficit with Parkinson's disease.
- Author
-
Hwang S, Agada P, Grill S, Kiemel T, and Jeka JJ
- Subjects
- Achilles Tendon, Aged, Female, Humans, Male, Middle Aged, Parkinson Disease complications, Perceptual Disorders etiology, Vibration, Parkinson Disease physiopathology, Perceptual Disorders physiopathology, Physical Stimulation, Postural Balance physiology, Proprioception physiology, Visual Perception physiology
- Abstract
Parkinson's disease (PD) is a progressive degenerative disease manifested by tremor, rigidity, bradykinesia, and postural instability. Deficits in proprioceptive integration are prevalent in individuals with PD, even at early stages of the disease. These deficits have been demonstrated primarily during investigations of reaching. Here, we investigated how PD affects sensory fusion of multiple modalities during upright standing. We simultaneously perturbed upright stance with visual, vestibular, and proprioceptive stimulation, to understand how these modalities are reweighted so that overall feedback remains suited to stabilizing upright stance in individuals with PD. Eight individuals with PD stood in a visual cave with a moving visual scene at 0.2 Hz while an 80-Hz vibratory stimulus was applied bilaterally to their Achilles tendons (stimulus turns on-off at 0.28 Hz) and a ±1 mA bilateral monopolar galvanic stimulus was applied at 0.36 Hz. The visual stimulus was presented at different amplitudes (0.2°, 0.8° rotation about ankle axis) to measure: the change in gain (weighting) to vision, an intramodal effect; and a simultaneous change in gain to vibration and galvanic stimulation, both intermodal effects. Trunk/leg gain relative to vision decreased when visual amplitude was increased, reflecting an intramodal visual effect. In contrast, when vibration was turned on/off, leg gain relative to vision was equivalent in individuals with PD, indicating no reweighting of visual information when proprioception was disrupted through vibration (i.e., no intermodal effect). Trunk and leg angle gain relative to GVS also showed no reweighting in individuals with PD. These results are in contrast to previous results with healthy adults, who showed clear intermodal effects in the same paradigm, suggesting that individuals with PD not only have a proprioceptive deficit during standing, but also have a cross-modal sensory fusion deficit that is crucial for upright stance control.
- Published
- 2016
- Full Text
- View/download PDF