1. Inference of nonlinear receptive field subunits with spike-triggered clustering.
- Author
-
Shah NP, Brackbill N, Rhoades C, Kling A, Goetz G, Litke AM, Sher A, Simoncelli EP, and Chichilnisky EJ
- Subjects
- Action Potentials, Algorithms, Animals, Computer Simulation, Fixation, Ocular, Likelihood Functions, Macaca fascicularis, Macaca mulatta, Models, Neurological, Nonlinear Dynamics, Photic Stimulation, Visual Cortex cytology, Retinal Ganglion Cells physiology, Visual Cortex physiology
- Abstract
Responses of sensory neurons are often modeled using a weighted combination of rectified linear subunits. Since these subunits often cannot be measured directly, a flexible method is needed to infer their properties from the responses of downstream neurons. We present a method for maximum likelihood estimation of subunits by soft-clustering spike-triggered stimuli, and demonstrate its effectiveness in visual neurons. For parasol retinal ganglion cells in macaque retina, estimated subunits partitioned the receptive field into compact regions, likely representing aggregated bipolar cell inputs. Joint clustering revealed shared subunits between neighboring cells, producing a parsimonious population model. Closed-loop validation, using stimuli lying in the null space of the linear receptive field, revealed stronger nonlinearities in OFF cells than ON cells. Responses to natural images, jittered to emulate fixational eye movements, were accurately predicted by the subunit model. Finally, the generality of the approach was demonstrated in macaque V1 neurons., Competing Interests: NS, NB, CR, AK, GG, AL, AS, ES, EC No competing interests declared, (© 2020, Shah et al.)
- Published
- 2020
- Full Text
- View/download PDF