Annabelle Gourlay, Kirsi Liitsola, Huldrych F. Günthard, Swee Hoe Ong, Norbert Bannert, Mariska Hillebregt, Jan Albert, Katrien Fransen, Oliver Laeyendecker, Barbara Gunsenheimer-Bartmeyer, François Blanquart, Astrid Gall, Peter Reiss, Ben Berkhout, Marion Cornelissen, Guido Vanham, Pia Kivelä, Matti Ristola, Daniela Bezemer, Kholoud Porter, Roger D. Kouyos, Margreet Bakker, M. Kate Grabowski, Matthew Hall, Laurence Meyer, Ard van Sighem, Christophe Fraser, Chris Wymant, Jacques Fellay, Paul Kellam, Centre interdisciplinaire de recherche en biologie (CIRB), Labex MemoLife, École normale supérieure - Paris (ENS-PSL), Université Paris sciences et lettres (PSL)-Université Paris sciences et lettres (PSL)-Collège de France (CdF (institution))-Ecole Superieure de Physique et de Chimie Industrielles de la Ville de Paris (ESPCI Paris), Université Paris sciences et lettres (PSL)-École normale supérieure - Paris (ENS-PSL), Université Paris sciences et lettres (PSL)-Institut National de la Santé et de la Recherche Médicale (INSERM)-Centre National de la Recherche Scientifique (CNRS), Laboratoire de Physique Théorique d'Orsay [Orsay] (LPT), Université Paris-Sud - Paris 11 (UP11)-Centre National de la Recherche Scientifique (CNRS), Center for Infection and Immunity Amsterdam (CINIMA), University of Cambridge [UK] (CAM), Laboratory of Experimental Virology - Department of Medical Microbiology [Amsterdam, The Netherlands], Academic Medical Center - Academisch Medisch Centrum [Amsterdam] (AMC), University of Amsterdam [Amsterdam] (UvA)-University of Amsterdam [Amsterdam] (UvA)-Center for Infection and Immunity Amsterdam - CINIMA [Amsterdam, The Netherlands], Stichting HIV Monitoring [Amsterdam], Universiteit van Amsterdam (UvA), University of Edinburgh, Department of Infectious Disease Epidemiology [London] (DIDE), Imperial College London, Service de rhumatologie [Rennes] = Rheumatology [Rennes], CHU Pontchaillou [Rennes], Robert Koch Institute [Berlin] (RKI), Ecole Polytechnique Fédérale de Lausanne (EPFL), Institute of Tropical Medicine [Antwerp] (ITM), University College of London [London] (UCL), Department of Medicine, The Johns Hopkins University School of Medicine-Division of Infectious Diseases, Helsinki University Hospital [Finland] (HUS), Department of Infectious Diseases and Hospital Epidemiology [Zurich], University hospital of Zurich [Zurich], Division of Intramural Research [Bethesda, MD, USA] (Cardiovascular Branch), National Institutes of Health [Bethesda] (NIH)-National Heart, Lung, and Blood Institute [Bethesda] (NHLBI), Centre de recherche en épidémiologie et santé des populations (CESP), Université de Versailles Saint-Quentin-en-Yvelines (UVSQ)-Université Paris-Sud - Paris 11 (UP11)-Assistance publique - Hôpitaux de Paris (AP-HP) (AP-HP)-Hôpital Paul Brousse-Institut National de la Santé et de la Recherche Médicale (INSERM), Wellcome Trust Genome Campus, Synthèse, Structure et Propriétés de Matériaux Fonctionnels (STEP), SYstèmes Moléculaires et nanoMatériaux pour l’Energie et la Santé (SYMMES), Institut de Chimie du CNRS (INC)-Centre National de la Recherche Scientifique (CNRS)-Université Grenoble Alpes [2016-2019] (UGA [2016-2019])-Institut de Recherche Interdisciplinaire de Grenoble (IRIG), Direction de Recherche Fondamentale (CEA) (DRF (CEA)), Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Direction de Recherche Fondamentale (CEA) (DRF (CEA)), Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Institut de Chimie du CNRS (INC)-Centre National de la Recherche Scientifique (CNRS)-Université Grenoble Alpes [2016-2019] (UGA [2016-2019])-Institut de Recherche Interdisciplinaire de Grenoble (IRIG), Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Commissariat à l'énergie atomique et aux énergies alternatives (CEA), Institut Nanosciences et Cryogénie (INAC), Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Université Grenoble Alpes [2016-2019] (UGA [2016-2019]), Nuffield Department of Medicine [Oxford, UK] (Big Data Institute), University of Oxford, AII - Infectious diseases, Medical Microbiology and Infection Prevention, AII - Amsterdam institute for Infection and Immunity, APH - Aging & Later Life, Global Health, University of Helsinki, Infektiosairauksien yksikkö, Clinicum, HUS Inflammation Center, HUS Internal Medicine and Rehabilitation, Medical Research Council (MRC), and Commission of the European Communities
HIV-1 set-point viral load—the approximately stable value of viraemia in the first years of chronic infection—is a strong predictor of clinical outcome and is highly variable across infected individuals. To better understand HIV-1 pathogenesis and the evolution of the viral population, we must quantify the heritability of set-point viral load, which is the fraction of variation in this phenotype attributable to viral genetic variation. However, current estimates of heritability vary widely, from 6% to 59%. Here we used a dataset of 2,028 seroconverters infected between 1985 and 2013 from 5 European countries (Belgium, Switzerland, France, the Netherlands and the United Kingdom) and estimated the heritability of set-point viral load at 31% (CI 15%–43%). Specifically, heritability was measured using models of character evolution describing how viral load evolves on the phylogeny of whole-genome viral sequences. In contrast to previous studies, (i) we measured viral loads using standardized assays on a sample collected in a strict time window of 6 to 24 months after infection, from which the viral genome was also sequenced; (ii) we compared 2 models of character evolution, the classical “Brownian motion” model and another model (“Ornstein–Uhlenbeck”) that includes stabilising selection on viral load; (iii) we controlled for covariates, including age and sex, which may inflate estimates of heritability; and (iv) we developed a goodness of fit test based on the correlation of viral loads in cherries of the phylogenetic tree, showing that both models of character evolution fit the data well. An overall heritability of 31% (CI 15%–43%) is consistent with other studies based on regression of viral load in donor–recipient pairs. Thus, about a third of variation in HIV-1 virulence is attributable to viral genetic variation., Author summary The severity of the outcome of infection by a pathogen depends on many distinct factors. These include the environment and the genetic sequences of both the host and the pathogen, among others. The fraction of variability in disease outcome explained by pathogen genetic factors is termed “heritability”, because these factors are “inherited” by the new host upon infection. Quantifying heritability is key to understanding the development of the disease and the evolution of the virus. Here, we determined heritability of set-point viral load (SPVL) in HIV-1. SPVL is the stable value of viraemia in asymptomatic infection and it is a strong predictor of disease severity. While heritability of SPVL has been estimated using comparisons of viral genome sequences, this has resulted in widely variable estimates of heritability. Using a large dataset of patients living in Europe, standardised viral loads measures, and new methods, we obtain a more definitive estimate of HIV-1 SPVL heritability in Europe at about 30%. Thus, a significant amount of the variation in disease outcome is explained by the genetics of the virus.