4 results on '"Denolly, Solène"'
Search Results
2. The amino-terminus of the hepatitis C virus (HCV) p7 viroporin and its cleavage from glycoprotein E2-p7 precursor determine specific infectivity and secretion levels of HCV particle types.
- Author
-
Denolly S, Mialon C, Bourlet T, Amirache F, Penin F, Lindenbach B, Boson B, and Cosset FL
- Subjects
- Amino Acid Sequence, Cell Line, HEK293 Cells, Hepacivirus genetics, Hepatitis C etiology, Hepatitis C virology, Host-Pathogen Interactions genetics, Host-Pathogen Interactions physiology, Humans, Models, Biological, Mutation, Protein Processing, Post-Translational, Viral Envelope Proteins chemistry, Viral Envelope Proteins genetics, Viral Nonstructural Proteins physiology, Viral Proteins chemistry, Viral Proteins genetics, Virulence genetics, Virulence physiology, Virus Assembly genetics, Virus Assembly physiology, Hepacivirus pathogenicity, Hepacivirus physiology, Viral Envelope Proteins physiology, Viral Proteins physiology
- Abstract
Viroporins are small transmembrane proteins with ion channel activities modulating properties of intracellular membranes that have diverse proviral functions. Hepatitis C virus (HCV) encodes a viroporin, p7, acting during assembly, envelopment and secretion of viral particles (VP). HCV p7 is released from the viral polyprotein through cleavage at E2-p7 and p7-NS2 junctions by signal peptidase, but also exists as an E2p7 precursor, of poorly defined properties. Here, we found that ectopic p7 expression in HCVcc-infected cells reduced secretion of particle-associated E2 glycoproteins. Using biochemical assays, we show that p7 dose-dependently slows down the ER-to-Golgi traffic, leading to intracellular retention of E2, which suggested that timely E2p7 cleavage and p7 liberation are critical events to control E2 levels. By studying HCV mutants with accelerated E2p7 processing, we demonstrate that E2p7 cleavage controls E2 intracellular expression and secretion levels of nucleocapsid-free subviral particles and infectious virions. In addition, our imaging data reveal that, following p7 liberation, the amino-terminus of p7 is exposed towards the cytosol and coordinates the encounter between NS5A and NS2-based assembly sites loaded with E1E2 glycoproteins, which subsequently leads to nucleocapsid envelopment. We identify punctual mutants at p7 membrane interface that, by abrogating NS2/NS5A interaction, are defective for transmission of infectivity owing to decreased secretion of core and RNA and to increased secretion of non/partially-enveloped particles. Altogether, our results indicate that the retarded E2p7 precursor cleavage is essential to regulate the intracellular and secreted levels of E2 through p7-mediated modulation of the cell secretory pathway and to unmask critical novel assembly functions located at p7 amino-terminus.
- Published
- 2017
- Full Text
- View/download PDF
3. The interplays between Crimean-Congo hemorrhagic fever virus (CCHFV) M segment-encoded accessory proteins and structural proteins promote virus assembly and infectivity.
- Author
-
Freitas, Natalia, Enguehard, Margot, Denolly, Solène, Levy, Camille, Neveu, Gregory, Lerolle, Solène, Devignot, Stephanie, Weber, Friedemann, Bergeron, Eric, Legros, Vincent, and Cosset, François-Loïc
- Subjects
CYTOSKELETAL proteins ,VIRAL proteins ,HEMORRHAGIC fever ,VIRAL envelope proteins ,GLYCOPROTEINS ,VIRUS-like particles - Abstract
Crimean-Congo hemorrhagic fever virus (CCHFV) is a tick-borne orthonairovirus that has become a serious threat to the public health. CCHFV has a single-stranded, tripartite RNA genome composed of L, M, and S segments. Cleavage of the M polyprotein precursor generates the two envelope glycoproteins (GPs) as well as three secreted nonstructural proteins GP38 and GP85 or GP160, representing GP38 only or GP38 linked to a mucin-like protein (MLD), and a double-membrane-spanning protein called NSm. Here, we examined the relevance of each M-segment non-structural proteins in virus assembly, egress and infectivity using a well-established CCHFV virus-like-particle system (tc-VLP). Deletion of MLD protein had no impact on infectivity although it reduced by 60% incorporation of GPs into particles. Additional deletion of GP38 abolished production of infectious tc-VLPs. The loss of infectivity was associated with impaired Gc maturation and exclusion from the Golgi, showing that Gn is not sufficient to target CCHFV GPs to the site of assembly. Consistent with this, efficient complementation was achieved in cells expressing MLD-GP38 in trans with increased levels of preGc to Gc conversion, co-targeting to the Golgi, resulting in particle incorporation and restored infectivity. Contrastingly, a MLD-GP38 variant retained in the ER allowed preGc cleavage but failed to rescue miss-localization or infectivity. NSm deletion, conversely, did not affect trafficking of Gc but interfered with Gc processing, particle formation and secretion. NSm expression affected N-glycosylation of different viral proteins most likely due to increased speed of trafficking through the secretory pathway. This highlights a potential role of NSm in overcoming Golgi retention and facilitating CCHFV egress. Thus, deletions of GP38 or NSm demonstrate their important role on CCHFV particle production and infectivity. GP85 is an essential viral factor for preGc cleavage, trafficking and Gc incorporation into particles, whereas NSm protein is involved in CCHFV assembly and virion secretion. Author summary: Orthonairoviruses, like the lethal Crimean-Congo hemorrhagic fever virus (CCHFV), encode secreted glycoproteins, such as GP38, in addition to virion envelope glycoproteins (Gn and Gc) that are processed by internal cleavage of the viral M segment encoded polyprotein. CCHFV MLD-GP38 proteins (GP160/GP85) also include an N-terminal domain encompassing a mucin-like protein that is released from GP38 by Furin. The protective effect of non-neutralizing monoclonal antibodies targeting GP38 against lethal CCHFV challenge previously highlighted the importance of GP38 in CCHFV replication. CCHFV also encodes a double-membrane-spanning protein (NSm) of unknown function, located between the Gn and Gc on the polyprotein. To investigate the roles of these so-called accessory proteins encoded by the CCHFV M-segment in virus formation and infectivity, we generated several M-segment deletion mutants and tested them in a CCHFV transcription-entry-competent virus-like particle (tc-VLP) system. Here, we demonstrate that GP38 is crucial for Gc biogenesis, interaction with Gn and trafficking to the Golgi, and that its deletion abrogates formation of infectious particles. We also show that NSm increases the rate of protein trafficking through the secretory pathway with altered N-glycosylation profiles that are advantageous for efficient virus release. These data advanced our understanding of GP38 and NSm roles and CCHFV-host interactions. [ABSTRACT FROM AUTHOR]
- Published
- 2020
- Full Text
- View/download PDF
4. The SARS-CoV-2 envelope and membrane proteins modulate maturation and retention of the spike protein, allowing assembly of virus-like particles.
- Author
-
Boson, Bertrand, Legros, Vincent, Bingjie Zhou, Siret, Eglantine, Mathieu, Cyrille, Cosset, François-Loïc, Lavillette, Dimitri, and Denolly, Solène
- Subjects
- *
COVID-19 , *MEMBRANE proteins , *SARS-CoV-2 , *VIRUS-like particles , *CYTOSKELETAL proteins , *COVID-19 pandemic , *VIRAL envelope proteins - Abstract
The severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), a β-coronavirus, is the causative agent of the COVID-19 pandemic. Like for other coronaviruses, its particles are composed of four structural proteins: spike (S), envelope (E), membrane (M), and nucleoprotein (N) proteins. The involvement of each of these proteins and their interactions are critical for assembly and production of β-coronavirus particles. Here, we sought to characterize the interplay of SARS-CoV-2 structural proteins during the viral assembly process. By combining biochemical and imaging assays in infected versus transfected cells, we show that E and M regulate intracellular trafficking of S as well as its intracellular processing. Indeed, the imaging data reveal that S is relocalized at endoplasmic reticulum (ER)-Golgi intermediate compartment (ERGIC) or Golgi compartments upon coexpression of E or M, as observed in SARS-CoV-2-infected cells, which prevents syncytia formation. We show that a C-terminal retrieval motif in the cytoplasmic tail of S is required for its M-mediated retention in the ERGIC, whereas E induces S retention by modulating the cell secretory pathway. We also highlight that E and M induce a specific maturation of N-glycosylation of S, independently of the regulation of its localization, with a profile that is observed both in infected cells and in purified viral particles. Finally, we show that E, M, and N are required for optimal production of virus-likeparticles. Altogether, these results highlight how E and M proteins may influence the properties of S proteins and promote the assembly of SARS-CoV-2 viral particles. [ABSTRACT FROM AUTHOR]
- Published
- 2021
- Full Text
- View/download PDF
Catalog
Discovery Service for Jio Institute Digital Library
For full access to our library's resources, please sign in.