10 results on '"Drobinski, Philippe"'
Search Results
2. Impact of surface heterogeneity on a buoyancy-driven convective boundary layer in light winds
- Author
-
Courault, Dominique, Drobinski, Philippe, Brunet, Yves, Lacarrere, Pierre, and Talbot, Charles
- Published
- 2007
- Full Text
- View/download PDF
3. Near-Surface Coherent Structures and The Vertical Momentum Flux in a Large-Eddy Simulation of the Neutrally-Stratified Boundary Layer
- Author
-
Foster, Ralph C., Vianey, Francois, Drobinski, Philippe, and Carlotti, Pierre
- Published
- 2006
- Full Text
- View/download PDF
4. Evidence of Organized Large Eddies by Ground-Based Doppler Lidar, Sonic Anemometer and Sodar
- Author
-
Drobinski, Philippe, Brown, Robert a., Flamant, Pierre H., and Pelon, Jacques
- Published
- 1998
- Full Text
- View/download PDF
5. ATMOSPHERIC BOUNDARY LAYER DYNAMICS: FROM TURBULENCE TO MESOSCALE SYSTEMS
- Author
-
Drobinski, Philippe, Service d'aéronomie (SA), Université de Versailles Saint-Quentin-en-Yvelines (UVSQ)-Université Pierre et Marie Curie - Paris 6 (UPMC)-Institut national des sciences de l'Univers (INSU - CNRS)-Centre National de la Recherche Scientifique (CNRS), Université Pierre et Marie Curie - Paris VI, Gilbert BEREZIAT, and Drobinski, Philippe
- Subjects
[SDU.OCEAN]Sciences of the Universe [physics]/Ocean, Atmosphere ,couche limite atmospherique ,[SDU.OCEAN] Sciences of the Universe [physics]/Ocean, Atmosphere ,orographic flows ,écoulements orographiques ,écoulements thermiques ,dynamique ,turbulence ,dynamics ,thermal flows ,planetary boundary layer - Abstract
The planetary boundary layer (PBL), at the interface between the surface and the free troposphere, is the region of transfer of energy (momentum, sensible and latent heat), wator vapor and pollutants between the surface and the free troposphere, upon which depends the horizontal and vertical distribution of clouds, aerosols and chemical species. The global understanding of physical processes in the PBL and their impact on the largest scales is an open field of high priority research activity. Indeed, their account in numerical models (from large-eddy simulations (LES) to limited area models (LAM) and global circulation models (GCM)) is a major issue for the understanding of climate and its evolution in relation with human activity.If the main atmospheric physical processes have been identified and analyzed for several decades, the improvement of numerical weather prediction (NWP) models require a re-examination of these processes to quantify more accurately their effects, to develop more accurate and reliable parameterizations and to evaluate the transport of chemical species in the atmosphere. I have thus focused my research effort on the PBL processes and their impact on regional scale, from turbulence to meso-scale systems. In detail, I have studied for the past years:1. turbulence driven vertical exchanges between the surface and the PBL and particularly the structure and parameterization of near-surface turbulence;2. the impact of orography and surface heterogeneity (sea/land or rural/urban contrasts, land use,..) on PBL flow. Moreover, I have significantly contributed to the development of lidars dedicated to the experimental investigation of the PBL at the studied scale range.My choices have been motivated by the lack of knowledge of numerous processes driving PBL flow dynamics at these scales, partly due to the inappropriate experimental and numerical tools at that time. The recent development of numerical models covering turbulence-scale to meso-scale and of remote sensors with high spatial and temporal resolution allowed me to re-visit dynamical processes which were assumed understood. Turbulence is the most striking example, since it has been studied for many decades with the universal theory of homogeneous and isotropic turbulence by Kolmogorov in 1941. This theory is the fundamental basis of our understanding of atmospheric turbulence and of the parameterization in NWP models. The new numerical and experimental tools allowed me to demonstrate the anisotropic nature of near-surface turbulence and its impact on energy transport and subgrid-scale parameterization.Considering meso-scale systems, the impact of orography and surface heterogeneity have also been the subject of many studies, but most of them considered scales that could be documented by the existing sensors and/or numerical models at that time, that is scales larger than about 30 km typically in the late 80's early 90's. The striking example is for orographic flows. The PYREX experiment in 1990 allowed substantial progress in our understanding and modelling capability of mountain waves. However, this experiment allowed validate, or find the limits of theories that were suggested decades before (e.g. Queney, 1948). I thus focused my research effort on the understanding of PBL flow dynamics perturbed at various scales by the surface, using suited instruments and meso-scale models (Méso-NH and MM5) in the framework of MAP (Mesoscale Alpine Programme, fall 1999), which allowed a big step in our understanding of orographic flows and ESCOMPTE (Expérience sur Site pour COntraindre les Modèles de Pollution atmosphérique et de Transport d'Emissions, summer 2001) which aimed at studying thermal flows and their impact on pollutant transport., Les objectifs de la recherche atmosphérique sont principalement la compréhension des processus de transfert et de transformation d'énergie, qui déterminent l'évolution du milieu atmosphérique, interagissent avec l'évolution météorologique et climatique et conditionnent leur prévisibilité. Ces objectifs de recherche se trouvent en amont et contribuent fortement aux besoins d'amélioration des prévisions météorologiques et climatiques. La tendance actuelle vers les études de petite échelle permet en outre d'aborder plus efficacement que par le passé des questions d'intérêt sociétal: l'étude des divers risques naturels engendrés par l'atmosphère (tempêtes, inondations,...), la qualité de l'air, la prévision à l'échelle locale, ... Dans ce contexte, la couche limite atmosphérique (CLA), à l'interface entre la surface terrestre et la troposphère libre, est une région particulièrement importante car elle est le siège de transferts d'énergie, d'humidité et de matière entre la surface et l'atmosphère libre, dont dépend la distribution horizontale et verticale des champs de vapeur d'eau, de nuages et d'aérosols. La compréhension globale des phénomènes qui se produisent dans la CLA et leur influence sur la grande échelle reste un sujet ouvert, et la prise en compte des processus les plus importants dans les modèles méso-échelle et dans les modèles de circulation générale constitue un enjeu majeur pour la compréhension du climat et de son évolution en relation avec l'activité humaine.Si les principaux processus physiques atmosphériques ont été identifiés et analysés depuis plusieurs décennies, l'amélioration des modèles météorologiques nécessite un ré-examen de ces processus pour quantifier plus précisément leurs effets, affiner les paramétrisations sous mailles nécessaires pour la modélisation climatique et évaluer les transports des constituants chimiques dans l'atmosphère. J'ai donc focalisé prioritairement mes actions de recherche sur la dynamique de la CLA et son impact à l'échelle régionale en couvrant un spectre large d'échelles spatio-temporelles, de l'échelle métrique, associée à la turbulence atmosphérique, à la centaine de kilomètres associée aux systèmes dynamiques de méso-échelle. En particulier, j'ai étudié:1. les mécanismes d'échanges turbulents entre la surface et la CLA en concentrant mon effort de recherche sur la structure et paramétrisation de la turbulence à proximité de la surface;2. les effets du relief et des héterogéneités de surface (contraste terre/mer, contraste urbain/périurbain, ...) sur l'atmosphère.J'ai par ailleurs contribué aux développements instrumentaux et méthodologiques par lidar nécessaires à la documentation de la dynamique de la CLA sur la gamme d'échelles étudiée.Ces choix résultent d'un manque de connaissances scientifiques sur de nombreux mécanismes contrôlant la dynamique de l'écoulement atmosphérique à ces échelles dû en partie à l'inadaptation des moyens d'investigation expérimentaux et numériques de l'époque. Le développement récent de modèles numériques de recherche ou de prévisions opérationnels à fine échelle (de l'échelle de la turbulence à la méso-échelle), et de moyens d'observations de plus en plus résolus, spatialement et temporellement, que cela soit depuis le sol, une plateforme aéroporté, sous ballons ou depuis l'espace m'a permis d'étudier avec un "oeil nouveau" des mécanismes que l'on supposaient compris. La turbulence en est l'exemple le plus frappant puisqu'étudiée depuis des décennies avec, en 1941, l'avénement de la théorie de la turbulence homogène isotrope par Kolmogorov (Kolmogorov, 1941). Cette théorie universelle constitue les fondements de notre connaissance de la turbulence atmosphérique et est la base de toutes les paramétrisations sous-mailles dans les modèles météorologiques. Les nouveaux moyens d'observation et de simulation des mécanismes turbulents m'ont permis de rendre compte du caractère fortement anisotrope de la turbulence atmosphérique, de la structure du champ turbulent et de son impact sur l'intensité des échanges entre la surface et la CLA et sur sa paramérisation dans les modèles météorologiques.A l'autre bout du spectre, sur des échelles de la centaine de kilomètres, nous connaissons sur le plan quantitatif, les effets des hétérogéneités de la surface sur l'écoulement atmosphérique, que cette hétérogéneité prenne la forme de contrastes thermiques en surface (contraste terre/mer par exemple, voir Simpson, 1994, 1997 pour des revues) ou de montagnes (voir Smith, 1989 et Durran, 1990 pour des revues). Ainsi les résultats de l'expérience PYREX (1990) ont permis des progrès notables dans la compréhension et la modélisation des ondes de gravité et la réévaluation de la paramétrisation du relief dans les modèles de climat et de prévision numérique. Néanmoins, ces études ont porté sur des perturbations de l'écoulement à l'échelle du massif et sont donc apparues comme la continuité des travaux théoriques conduits dans la première moitié du 20ème siècle (e.g. Queney, 1948). J'ai donc étudié la structure fine de l'écoulement atmosphérique perturbé à des échelles variées par la surface, dont la complexité n'avait jusqu'alors pas été appréhendée faute de moyens d'observations et de modélisation adaptés: j'ai analysé la circulation atmosphérique dans les vallées et réseaux complexes de vallées et leur sillage, les interactions entre brise et écoulements de vallées, les aspects instationnaires et tridimensionels de ces écoulements en m'appuyant sur les nouveaux outils d'observations tels que les lidars au développement desquels j'ai largement contribué, et de modélisation à fine échelle (e.g. Méso-NH, MM5). J'ai conduit ces études dans le cadre des programmes MAP (Mesoscale Alpine Programme, 1999) et ESCOMPTE (Expérience sur Site pour COntraindre les Modèles de Pollution atmosphérique et de Transport d'Emissions, 2001).
- Published
- 2005
6. Impact of Terrain Heterogeneity on Coherent Structure Properties: Numerical Approach.
- Author
-
Fesquet, Clement, Dupont, Sylvain, Drobinski, Philippe, Dubos, Thomas, and Barthlott, Christian
- Subjects
ECOLOGICAL heterogeneity ,WIND speed ,FOREST canopies ,TURBULENCE ,PLANT canopies - Abstract
A three-dimensional large-eddy simulation (LES) model, which includes the effects of plant–atmosphere interactions, is used to study the effects of surface inhomogeneities on near-surface coherent structures over an open field and behind a forest canopy. These simulated conditions are representative of two wind sectors of the Site Instrumental de Recherche par Télédétection Atmosphérique (SIRTA) experimental site at the Institut Pierre Simon Laplace, Palaiseau, France. Coherent structure properties deduced from wavelet transforms of the simulated near-surface vertical velocity time series are not modified by upstream terrain heterogeneities, in agreement with site measurements. This feature is related to the nature of structures detected from the vertical velocity time series. The turbulence close to the surface seems composed of both local coherent structures and large coherent structures reflecting outer-layer properties, which depend on the overall surface heterogeneity or upstream heterogeneity. It is argued that the streamwise velocity is representative of these large outer-layer structures that impinge onto the ground through a top-down mechanism as identified through the space–time correlation of the wind velocity components. In contrast, the vertical velocity is more representative of small structures resulting from the impingement of the large outer-layer structures. These small structures represent locally-generated, active turbulence, which adjusts rapidly to local surface conditions, and consequently they are only weakly dependent on upstream heterogeneities. [ABSTRACT FROM AUTHOR]
- Published
- 2009
- Full Text
- View/download PDF
7. Long-term study of coherent structures in the atmospheric surface layer.
- Author
-
Barthlott, Christian, Drobinski, Philippe, Fesquet, Clément, Dubos, Thomas, and Pietras, Christophe
- Subjects
- *
TURBULENCE , *FLUID dynamics , *EDDY flux , *ATMOSPHERIC boundary layer , *WAVELETS (Mathematics) , *FLUCTUATIONS (Physics) - Abstract
A long-term study of coherent turbulence structures in the atmospheric surface layer has been carried out using 10 months of turbulence data taken on a 30-m tower under varying meteorological conditions. We use an objective detection technique based on wavelet transforms. The applied technique permits the isolation of the coherent structures from small-scale background fluctuations which is necessary for the development of dynamical models describing the evolution and properties of these phenomena. It was observed that coherent structures occupied 36% of the total time with mean turbulent flux contributions of 44% for momentum and 48% for heat. The calculation of a transport efficiency parameter indicates that coherent structures transport heat more efficiently than momentum. Furthermore, the transport efficiency increases with increasing contribution of the structures to the overall transport. [ABSTRACT FROM AUTHOR]
- Published
- 2007
- Full Text
- View/download PDF
8. Length scales in wall-bounded high-Reynolds-number turbulence.
- Author
-
CARLOTTI, PIERRE and DROBINSKI, PHILIPPE
- Subjects
TURBULENCE ,FLUID dynamics ,REYNOLDS number ,BOUNDARY layer (Aerodynamics) ,EDDIES - Abstract
In this study, estimates of inhomogeneous integral scales are derived from rapid distortion theory (RDT) for the case of wall-bounded high-Reynolds-number turbulence and from large-eddy simulation (LES) of a neutrally stratified atmospheric boundary layer (ABL). As for any inhomogeneous flow, integral scales in different directions are introduced. Downward integral scales are introduced since they differ from the usual vertical integral scales because of the presence of the wall. The study concentrates on the length scales based on the vertical velocity, which are the most affected by blocking by the wall, which is assumed to be horizontal. It is shown from RDT that the asymptotic behaviour of the integral length scales for small heights depends crucially on the spectrum power law -2p. When 2p > 1 there is always one length scale which does not scale with the distance to the wall z. Only the downward integral scale is proportional to z for any 2p. These results show that the assumption, often made in studies of boundary layers, that all the lengths are proportional to z, is not compatible with the assumption of a spectrum decaying according to Kolmogorov''s law, but rather with a spectrum following a -1 power law. It is an encouraging result since there is now widespread theoretical, experimental and numerical evidence that such a -1 power-law subrange exists in the spectra of high-Reynolds-number wall-bounded turbulence, for eddies larger than z. The RDT results allow an interpretation of the vertical profiles of the integral length scales computed from the LES outputs: above the third grid point, the vertical profiles of the integral length scales have a linear shape, as expected for high-Reynolds-number turbulence and 2p = 1. Very close to the surface, the upward integral length scales decreases with z because of the fast decay of the spectrum (2p > 2) from the LES subgrid model. The longitudinal-to-transverse integral length scale ratio is computed using RDT and LES. This ratio is interpreted as the aspect ratio of elongated near-wall large eddies, which are ubiquitous features of LES of boundary layers in which shear plays an important role in the dynamics. The LES shows that the longitudinal-to-transverse integral length scale ratio is an increasing function of z, ranging between 1 and 3, which is of the order of magnitude of the published theoretical value of 3.5. From RDT, the evolution with z of the longitudinal-to-transverse integral length scale ratio means either that the velocity shear β decreases with z and the spectral power law 2p varies in a non-trivial manner, or if both the RDT and LES are valid that the scale of the large eddies is proportional to β z with β varying from 1.3 to about 4. [ABSTRACT FROM AUTHOR]
- Published
- 2004
- Full Text
- View/download PDF
9. The Structure of the Near-Neutral Atmospheric Surface Layer.
- Author
-
Drobinski, Philippe, Carlotti, Pierre, Newsom, Rob K., Banta, Robert M., Foster, Ralph C., and Redelsperger, Jean-Luc
- Subjects
- *
ATMOSPHERE , *EDDIES , *FLUID dynamics , *TURBULENCE , *REYNOLDS number , *METEOROLOGY - Abstract
Recent observational data (turbulence variables by sonic anemometers and three-dimensional flow pattern by Doppler lidar), obtained during the Cooperative Atmosphere Surface Exchange Study field campaign in October 1999 (CASES-99), show evidence of a layered structure of the near-neutral surface layer: (i) the eddy surface layer (ESL), which is the lower sublayer where blocking of impinging eddies is the dominating mechanism; and (ii) the shear surface layer (SSL), which is an intermediate sublayer, where shear affects the isotropy of turbulence. The origin of the eddies impinging from aloft (probably from the SSL) down to the ESL is preliminarily addressed in this study, since the Doppler lidar data show evidence of linearly organized eddies embedded in the surface layer (i.e., about 100-m vertical extent) and horizontally spaced by about 300 m. This is consistent with theories predicting that the primary mechanism of eddy motion in high Reynolds number wall layers is "top-down." The layered structure of the surface layer also has a visible effect on vertical profiles of vertical velocity variance (&w²macr;) and momentum transport. In the ESL, &w²macr; scales as z2/3 while it is constant or slightly decreases within the SSL. Concerning momentum transport, ejections contribute identically to the momentum flux as do sweeps in the ESL, whereas in the SSL, ejections give about 50% higher relative contribution. [ABSTRACT FROM AUTHOR]
- Published
- 2004
- Full Text
- View/download PDF
10. Remote Measurement of Turbulent Wind Spectra by Heterodyne DopplerLidar Technique.
- Author
-
Drobinski, Philippe, Dabas, Alain M., and Flamant, Pierre H.
- Subjects
- *
WIND speed , *TURBULENCE - Abstract
Presents an approach for measuring atmospheric wind field and wind turbulence at remote distance using the dissipation rate and the k-spectral peak (outer scale of TKE). Lidar measurement; Measurement of turbulence parameters; Conclusions.
- Published
- 2000
- Full Text
- View/download PDF
Catalog
Discovery Service for Jio Institute Digital Library
For full access to our library's resources, please sign in.