1. WWOX and p53 Dysregulation Synergize to Drive the Development of Osteosarcoma.
- Author
-
Del Mare S, Husanie H, Iancu O, Abu-Odeh M, Evangelou K, Lovat F, Volinia S, Gordon J, Amir G, Stein J, Stein GS, Croce CM, Gorgoulis V, Lian JB, and Aqeilan RI
- Subjects
- Animals, Bone Neoplasms genetics, Cell Differentiation, Cell Lineage, Core Binding Factor Alpha 1 Subunit physiology, Gene Expression Profiling, Humans, Mice, Mice, Knockout, Osteoblasts physiology, Osteogenesis, Osteosarcoma genetics, Peptide Fragments blood, Procollagen blood, WW Domain-Containing Oxidoreductase, Bone Neoplasms etiology, Osteosarcoma etiology, Oxidoreductases physiology, Tumor Suppressor Protein p53 physiology, Tumor Suppressor Proteins physiology
- Abstract
Osteosarcoma is a highly metastatic form of bone cancer in adolescents and young adults that is resistant to existing treatments. Development of an effective therapy has been hindered by very limited understanding of the mechanisms of osteosarcomagenesis. Here, we used genetically engineered mice to investigate the effects of deleting the tumor suppressor Wwox selectively in either osteoblast progenitors or mature osteoblasts. Mice with conditional deletion of Wwox in preosteoblasts (Wwox
Δosx1 ) displayed a severe inhibition of osteogenesis accompanied by p53 upregulation, effects that were not observed in mice lacking Wwox in mature osteoblasts. Deletion of p53 in WwoxΔosx1 mice rescued the osteogenic defect. In addition, the Wwox;p53Δosx1 double knockout mice developed poorly differentiated osteosarcomas that resemble human osteosarcoma in histology, location, metastatic behavior, and gene expression. Strikingly, the development of osteosarcomas in these mice was greatly accelerated compared with mice lacking p53 only. In contrast, combined WWOX and p53 inactivation in mature osteoblasts did not accelerate osteosarcomagenesis compared with p53 inactivation alone. These findings provide evidence that a WWOX-p53 network regulates normal bone formation and that disruption of this network in osteoprogenitors results in accelerated osteosarcoma. The Wwox;p53Δosx1 double knockout establishes a new osteosarcoma model with significant advancement over existing models. Cancer Res; 76(20); 6107-17. ©2016 AACR., Competing Interests: of Potential Conflicts of Interest. Non, (©2016 American Association for Cancer Research.)- Published
- 2016
- Full Text
- View/download PDF