1. Induction of apoptosis by ursolic acid through activation of caspases and down-regulation of c-IAPs in human prostate epithelial cells.
- Author
-
Choi YH, Baek JH, Yoo MA, Chung HY, Kim ND, and Kim KW
- Subjects
- Blotting, Western, Cells, Cultured, Cytoskeletal Proteins metabolism, DNA Fragmentation, DNA-Binding Proteins metabolism, Enzyme Activation drug effects, Epithelial Cells cytology, Epithelial Cells drug effects, Epithelial Cells enzymology, Genes, bcl-2, Genes, p53, Humans, Male, Mitochondria physiology, Poly(ADP-ribose) Polymerases metabolism, Proto-Oncogene Proteins biosynthesis, Proto-Oncogene Proteins genetics, Proto-Oncogene Proteins c-bcl-2 biosynthesis, Rad51 Recombinase, Tumor Suppressor Protein p53 biosynthesis, bcl-2-Associated X Protein, beta Catenin, Ursolic Acid, Antineoplastic Agents, Phytogenic pharmacology, Apoptosis drug effects, Caspases metabolism, Gene Expression Regulation drug effects, Genes, Intracisternal A-Particle drug effects, Prostate cytology, Trans-Activators, Triterpenes pharmacology
- Abstract
Previous results indicate that ursolic acid (UA), a pentacyclic triterpene acid, has strong cytotoxic activity and effectively induces growth arrest in a variety of systems. However, the molecular mechanisms underlying anti-tumorigenic or chemopreventive activities of UA are poorly understood. To further determine the mechanism of UA, we investigated the effects of UA on the growth of human prostate epithelial cells. Upon treatment with UA, a concentration-dependent inhibition of cell viability was observed and cells developed many of the hallmark features of apoptosis, including condensation of chromatin and DNA fragmentation. These apoptotic effects of UA were accompanied by proteolytic cleavage of specific target proteins such as PARP, beta-catenin and Rad51 proteins suggesting the possible involvement of caspases. Western blotting and in vitro assay demonstrated that processing/activation of at least four caspases (caspase-1, -3, -8 and -9) accompanies the generation of UA-mediating apoptotic cell death. In addition to activation of caspases, the down-regulation of c-IAPs family proteins, which suppress the apoptotic death signaling by the direct inhibition of activated caspases, was also observed. However, UA did not affect both the level of p53 expression and the alteration of the balance between Bcl-2 and Bax expression. These data suggest that apoptotic signals evoked by UA treatment may converge caspases activation through down-regulation of c-IAPs family and without mitochondrial dysfunction.
- Published
- 2000