This review is focused on one of the stages of ontogenesis distinctive by its particular tolerance to the action of unfavorable factors and ability to retain the genomic material for a long period of time, i.e., fungal spores. The major part is devoted to the characterization of the specific stage typical for spores, which is called dormancy. Data are presented characterizing the carbohydrate and lipid composition of spores, with special attention being paid to the role of carbohydrate protectors, in particular, trehalose and mannite, as well as to the role of rafts in the process of sporogenesis. The role of special compounds called autoinhibitors and autostimulators in the process of exit from dormancy is discussed. The final section deals with the role of spore seeding material in biotechnological processes. Data on the correlation between the chemical composition of spores, their ability to remain dormant, and the germination process are considered. Special biotechnological approaches are presented for the first; they allow for the preservation of the germinating ability of spores, intensification of sporogenesis, changes in the ratio of final fermentation products, and an increase in their yield.