1. Integrated genomic/epigenomic analysis stratifies subtypes of clear cell ovarian carcinoma, highlighting their cellular origin.
- Author
-
Nishijima A, Oda K, Hasegawa K, Koso T, Asada K, Ikeda Y, Taguchi A, Maeda D, Nagae G, Tsuji S, Tatsuno K, Uehara Y, Kurosaki A, Sato S, Tanikawa M, Sone K, Mori M, Ikemura M, Fujiwara K, Ushiku T, Osuga Y, and Aburatani H
- Subjects
- Humans, Female, Genomics methods, Class I Phosphatidylinositol 3-Kinases genetics, Epigenomics methods, Exome Sequencing, Middle Aged, Ovarian Neoplasms genetics, Ovarian Neoplasms pathology, Transcription Factors genetics, Transcription Factors metabolism, DNA-Binding Proteins genetics, DNA-Binding Proteins metabolism, Mutation, Adenocarcinoma, Clear Cell genetics, Adenocarcinoma, Clear Cell pathology, DNA Methylation
- Abstract
The cellular origin of clear cell ovarian carcinoma (CCOC), a major histological subtype of ovarian carcinoma remains elusive. Here, we explored the candidate cellular origin and identify molecular subtypes using integrated genomic/epigenomic analysis. We performed whole exome-sequencing, microarray, and DNA methylation array in 78 CCOC samples according to the original diagnosis. The findings revealed that ARID1A and/or PIK3CA mutations were mutually exclusive with DNA repair related genes, including TP53, BRCA1, and ATM. Clustering of CCOC and other ovarian carcinomas (n = 270) with normal tissues from the fallopian tube, ovarian surface epithelium, endometrial epithelium, and pelvic peritoneum mesothelium (PPM) in a methylation array showed that major CCOC subtypes (with ARID1A and/or PIK3CA mutations) were associated with the PPM-lile cluster (n = 64). This cluster was sub-divided into three clusters: (1) mismatch repair (MMR) deficient with tumor mutational burden-high (n = 2), (2) alteration of ARID1A (n = 51), and (3) ARID1A wild-type (n = 11). The remaining samples (n = 14) were subdivided into (4) ovarian surface epithelium-like (n = 11) and (5) fallopian tube-like (considered as high-grade serous histotype; n = 3). Among these, subtypes (1-3) and others (4 and 5) were found to be associated with immunoreactive signatures and epithelial-mesenchymal transition, respectively. These results contribute to the stratification of CCOC into biological subtypes., (© 2024. The Author(s).)
- Published
- 2024
- Full Text
- View/download PDF