1. Light-Modulated Exposure of the Light-Harvesting Complex II (LHCII) to Protein Kinase(s) and State Transition in Chlamydomonas reinhardtii Xanthophyll Mutants
- Author
-
Krishna K. Niyogi, Martin Vink, Hagit Zer, Reinhold G. Herrmann, Bertil Andersson, Noa Alumot, Itzhak Ohad, and Ariel Gaathon
- Subjects
Light ,Pigment binding ,Light-Harvesting Protein Complexes ,Chlamydomonas reinhardtii ,macromolecular substances ,Xanthophylls ,Biochemistry ,Animals ,Phosphorylation ,Protein kinase A ,Cells, Cultured ,Plant Proteins ,Photosystem ,biology ,Binding protein ,Photosystem II Protein Complex ,biology.organism_classification ,Transmembrane domain ,Thylakoid ,Biophysics ,Electrophoresis, Polyacrylamide Gel ,Oxidation-Reduction ,Protein Kinases ,Protein Binding - Abstract
Reversible phosphorylation of chl a/b protein complex II (LHCII), the mobile light-harvesting antenna, regulates its association and energy transfer/dissipation to photosystem (PS) II or I (state transition). Excitation of LHCII induces conformational changes affecting the exposure of the phosphorylation site at the N-terminal domain to protein kinase(s) [Zer, H., et al. (1999) Proc. Natl. Acad. Sci. U.S.A. 96, 8277-8282; Zer, H., et al. (2003) Biochemistry 42, 728-738]. Thus, it was of interest to examine whether the pigment composition of LHCII affects the light-induced modulation of LHCII phosphorylation and state transition. To this end, we have used thylakoids of wild-type Chlamydomonas reinhardtii and xanthophyll deficient mutants npq1, lor1, npq2, npq1 lor1, and npq2 lor1. Phosphorylated protein bands P11, P13, and P17 are considered components of the mobile C. reinhardtii LHCII complex. The protein composition of these bands has been analyzed by mass spectrometry using Qtof-2 with a nanospray attachment. P11 and P13 contain C. reinhardtii light-harvesting chlorophyll a/b binding protein LhcII type I. P17 contains C. reinhardtii LhcII types III and IV. Illumination of isolated thylakoids inhibits the redox-controlled phosphorylation of polypeptide bands P13 and P17 and to a lower extent that of P11. The light-induced inhibition of LHCII phosphorylation and the state transition process are not influenced by extensive differences in the xanthophyll composition of the mutants. Thus, LHCII can be visualized as possessing two functionally distinct, independent domains: (i) the pigment binding transmembrane domain regulating the extent of energy transfer/dissipation and (ii) the surface-exposed phosphorylation site regulating the association of LHCII with PSII or PSI.
- Published
- 2004
- Full Text
- View/download PDF