1. Inhibition of TXA2 synthesis with OKY-046 improves liver preservation by prolonged hypothermic machine perfusion in rats.
- Author
-
Xu, Hongzhi, Lee, Charles Y, Clemens, Mark G, and Zhang, Jian X
- Subjects
PRESERVATION of organs, tissues, etc. ,LIVER ,PERFUSION ,THROMBOXANES ,SPRAGUE Dawley rats ,HISTOLOGY - Abstract
Background and Aim: We previously reported that hypothermic machine perfusion (HMP) for liver preservation is feasible, but hepatic microcirculatory dysfunction and significant liver damage remain major obstacles in its application when the preservation is extended to 24 h. The underlying injury mechanism is not well understood. The present study sought to investigate the role of thromboxane A
2 (TXA2 ) in the pathogenesis of liver injury after prolonged HMP. Methods: Livers isolated from Sprague–Dawley rats were subjected to continuous machine perfusion with University of Wisconsin (UW) solution at a flow rate of 0.4 mL/min/g liver at 4°C for 24 h. A specific TXA2 synthase inhibitor, OKY-046 (OKY), was added to UW solution during the preservation period and to the Krebs–Henseleit buffer during reperfusion. The performance of the livers after preservation was evaluated using an isolated liver perfusion system with Krebs–Henseleit buffer at a flow rate of 15 mL/min at 37°C for 30 min. Results: Prolonged HMP induced a significant release of TXA2 into the portal circulation as indicated by markedly increased levels of TXB2 in the perfusate during reperfusion (at 30 min, 1447.4 ± 163.6 pg/mL vs 50.91 ± 6.7 pg/mL for control). Inhibition of TXA2 synthesis with OKY significantly decreased releases of TXA2 (69.8 ± 13.4 pg/mL) concomitant with reduced lactate dehydrogenase (LDH) releases (at 30 min, HMP + OKY: 144.9 ± 27.9 U/L; HMP: 369.3 ± 68.5 U/L; simple cold storage or SCS: 884.4 ± 80.3 U/L), decreased liver wet/dry weight ratio (HMP + OKY vs SCS and HMP: 3.6 ± 0.3 vs 4.4 ± 0.1 and 3.9 ± 0.2, respectively) and increased hyaluronic acid uptake (at 30 min, HMP + OKY vs SCS, HMP: 33.1 ± 2.9% vs 13.9 ± 3.6%, 18.6 ± 2.4%, respectively). Liver histology also showed significant improvement in tissue edema and hepatocellular necrosis with OKY compared with HMP without OKY. Conclusion: The results demonstrate that TXA2 is involved in the development of hepatocellular injury induced by HMP, and inhibition of TXA2 synthesis during preservation and reperfusion protects liver hepatocytes and sinusoidal endothelial cells from injuries caused by prolonged HMP. [ABSTRACT FROM AUTHOR]- Published
- 2008
- Full Text
- View/download PDF