1. Soybean residue based biochar prepared by ball milling assisted alkali activation to activate peroxydisulfate for the degradation of tetracycline.
- Author
-
Li J, Liu Y, Ren X, Dong W, Chen H, Cai T, Zeng W, Li W, and Tang L
- Subjects
- Alkalies, Charcoal, Glycine max, Tetracycline, Water Pollutants, Chemical
- Abstract
The advanced oxidation process (AOPs) has caused great concern in recent years. Among them, biochar has been widely studied as a catalyst for advanced oxidation process because of its low price and low environmental risk. In this study, a novel ball milling assisted KOH activation biochar (MKBC) was prepared and applied in peroxydisulfate (PDS) activation to degrade tetracycline hydrochloride (TC-H). In comparison with the oxidation (3.48%) by PDS alone and adsorption (36.19%) by MKBC alone, the removal rate of TC-H was increased to 84.15% in the MKBC/PDS system, indicating that MKBC can successfully activate PDS. Besides, the catalytic activity of the MKBC to activate PDS for the degradation of TC-H is 58.33% higher than that of pristine biochar (PBC). In addition, MKBC has outstanding stability that after three repeated experiments, the removal rate of TC-H by the MKBC/PDS system still remains 77.35%. Meanwhile, the mechanism was investigated that the singlet oxygen (
1 O2 ) seized the principal position in the degradation of TC-H in the PDS/MKBC system. This study explored a novel, solvent-free and economic method to propose this extraordinary biochar, which provided a new strategy for the future research of biochar., Competing Interests: Declaration of Competing Interest The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper., (Copyright © 2021. Published by Elsevier Inc.)- Published
- 2021
- Full Text
- View/download PDF