1. Interaction between major catechins and umami amino acids in green tea based on electronic tongue technology.
- Author
-
Liu Z, Ran Q, Li Q, Yang T, Dai Y, Zhang T, Fang S, Pan K, and Long L
- Subjects
- Amino Acids, Electronic Nose, Astringents analysis, Glutamic Acid, Tea chemistry, Catechin analysis
- Abstract
Umami amino acids inhibit the bitter and astringent taste presentation of catechins, which is essential for the taste regulation of green tea. In this study, the concentration-intensity trends and taste threshold properties of major catechin monomers were investigated using an electronic tongue. The taste and chemical structure interactions between the ester-type catechins and theanine, glutamic acid (Glu), and aspartic acid (Asp) were further analyzed by in vitro simulation and analysis of their reciprocal chemical structures. The results showed that the bitterness and astringency of the major catechin monomers increased with increasing concentration, and their bitterness thresholds and their electron tongue response values were higher than those of the astringent values, while the bitterness and astringency of the ester-type catechins were higher than those of the nonester type. The three amino acids inhibited the bitterness intensity of ester catechins (epigallocatechin gallate, epicatechin gallate, and gallocatechin gallate) at different concentrations, and the effects on the astringency intensity of ester catechins were complicated. Ester catechins significantly enhanced the umami intensity of theanine, Glu, and Asp at different concentrations. Their reciprocal chemical structures showed that hydrogen bonding was the main interaction force between the three ester-type catechins and the umami amino acids, with theanine and Glu interacting more strongly with ester-type catechins than Asp, and Glu having a lower binding energy to ester-type catechins, which bonded more easily., (© 2023 The Authors. Journal of Food Science published by Wiley Periodicals LLC on behalf of Institute of Food Technologists.)
- Published
- 2023
- Full Text
- View/download PDF