1. Intramolecular Disulfide Bridges in Voltage-Dependent Anion Channel 2 (VDAC2) Protein from Rattus norvegicus Revealed by High-Resolution Mass Spectrometry.
- Author
-
Pittalà MGG, Reina S, Cucina A, Cunsolo V, Guarino F, Di Francesco A, Foti S, De Pinto V, and Saletti R
- Subjects
- Animals, Rats, Oxidation-Reduction, Cysteine chemistry, Cysteine analysis, Molecular Sequence Data, Chromatography, High Pressure Liquid methods, Voltage-Dependent Anion Channel 2 chemistry, Voltage-Dependent Anion Channel 2 metabolism, Voltage-Dependent Anion Channel 2 analysis, Disulfides chemistry, Disulfides analysis, Disulfides metabolism, Tandem Mass Spectrometry methods, Amino Acid Sequence
- Abstract
Voltage-Dependent Anion Channel isoforms (VDAC1, VDAC2, and VDAC3) are relevant components of the outer mitochondrial membrane (OMM) and play a crucial role in regulation of metabolism and in survival pathways. As major players in the regulation of cellular metabolism and apoptosis, VDACs can be considered at the crossroads between two broad families of pathologies, namely, cancer and neurodegeneration, the former being associated with elevated glycolytic rate and suppression of apoptosis in cancer cells, the latter characterized by mitochondrial dysfunction and increased cell death. Recently, we reported the characterization of the oxidation pattern of methionine and cysteines in rat and human VDACs showing that each cysteine in these proteins is present with a preferred oxidation state, ranging from the reduced to the trioxidized form, and such an oxidation state is remarkably conserved between rat and human VDACs. However, the presence and localization of disulfide bonds in VDACs, a key point for their structural characterization, have so far remained undetermined. Herein we have investigated by nanoUHPLC/High-Resolution nanoESI-MS/MS the position of intramolecular disulfide bonds in rat VDAC2 (rVDAC2), a protein that contains 11 cysteines. To this purpose, extraction, purification, and enzymatic digestions were carried out at slightly acidic or neutral pH in order to minimize disulfide bond interchange. The presence of six disulfide bridges was unequivocally determined, including a disulfide bridge linking the two adjacent cysteines 4 and 5, a disulfide bridge linking cysteines 9 and 14, and the alternative disulfide bridges between cysteines 48, 77, and 104. A disulfide bond, which is very resistant to reduction, between cysteines 134 and 139 was also detected. In addition to the previous findings, these results significantly extend the characterization of the oxidation state of cysteines in rVDAC2 and show that it is highly complex and presents unusual features. Data are available via ProteomeXchange with the identifier PXD044041.
- Published
- 2024
- Full Text
- View/download PDF