1. Neutrophil extracellular trap formation in anti-neutrophil cytoplasmic antibody-associated and large-vessel vasculitis.
- Author
-
Michailidou D, Kuley R, Wang T, Hermanson P, Grayson PC, Cuthbertson D, Khalidi NA, Koening CL, Langford CA, McAlear CA, Moreland LW, Pagnoux C, Seo P, Specks U, Sreih AG, Warrington KJ, Monach PA, Merkel PA, and Lood C
- Subjects
- Humans, Male, Female, Child, Adolescent, Adult, Middle Aged, Aged, Aged, 80 and over, Case-Control Studies, Neutrophils, Extracellular Traps metabolism, Anti-Neutrophil Cytoplasmic Antibody-Associated Vasculitis drug therapy, Granulomatosis with Polyangiitis metabolism, Giant Cell Arteritis metabolism, Microscopic Polyangiitis metabolism, Takayasu Arteritis metabolism, Thrombospondin 1 metabolism
- Abstract
Levels of neutrophil extracellular traps (NETs) were measured in plasma of healthy controls (HC, n = 30) and patients with granulomatosis with polyangiitis (GPA, n = 123), microscopic polyangiitis (MPA, n = 61), Takayasu's arteritis (TAK, n = 58), and giant cell arteritis (GCA, n = 68), at times of remission or activity and correlated with levels of the platelet-derived thrombospondin-1 (TSP-1). Levels of NETs were elevated during active disease in patients with GPA (p < 0.0001), MPA (p = 0.0038), TAK (p < 0.0001), and GCA (p < 0.0001), and in remission for GPA, p < 0.0001, MPA, p = 0.005, TAK, p = 0.03, and GCA, p = 0.0009. All cohorts demonstrated impaired NET degradation. Patients with GPA (p = 0.0045) and MPA (p = 0.005) had anti-NET IgG antibodies. Patients with TAK had anti-histone antibodies (p < 0.01), correlating with presence of NETs. Levels of TSP-1 were increased in all patients with vasculitis, and associated with NET formation. NET formation is a common process in vasculitides. Targeting NET formation or degradation could be potential therapeutic approaches for vasculitides., Competing Interests: Declaration of Competing Interest Dr. Michailidou received Advisory Board fees from ChemoCentryx. Dr. Khalidi received clinical trial support from BMS, Sanofi and Abbvie, travel support from Astra Zeneca, and Advisory Board fee from Roche. Dr. Koening served on the advisory board for Chemocentryx and Genentech. Dr. Specks reports receiving funds for the following activities: Consulting: AstraZeneca, ChemoCentryx. Research Support: AstraZeneca, GlaxoSmithKline, Bristol-Myers Squibb, Genentech/Roche, InflaRx. Dr. Sreih works at Bristol-Myers Squibb and owns Astra Zeneca and Alexion Stocks. Dr. Warrington received clinical trial support from Eli Lilly and Kiniksa. Dr. Monach received consulting fees from Kiniksa, Celgene/BMC, and ChemoCentryx. Dr. Merkel reports receiving funds for the following activities: Consulting and Research Support: AbbVie, AstraZeneca, Boeringher-Ingelheim, Bristol-Myers Squibb, ChemoCentryx, Forbius, Genentech/Roche, Genzyme/Sanofi, GlaxoSmithKline, InflaRx, Takeda. Consulting only: CSL Behring, Dynacure, EMDSerono, Janssen, Kiniksa, Kyverna, Magenta, MiroBio, Neutrolis, Novartis, Pfizer, Sparrow, Talaris. Royalties: UpToDate. Dr. Lood received research funding from Pfizer, Gilead Sciences, Boehringer Ingelheim, Redd Pharma, Amytryx, and Eli Lilly., (Copyright © 2023 Elsevier Inc. All rights reserved.)
- Published
- 2023
- Full Text
- View/download PDF