1. A rapid, nongenomic pathway facilitates the synaptic transmission induced by retinoic acid at the developing synapse.
- Author
-
Liou JC, Ho SY, Shen MR, Liao YP, Chiu WT, and Kang KH
- Subjects
- Acetylcholine metabolism, Animals, Calcium Signaling drug effects, Enzyme Inhibitors pharmacology, Fluorescence, Phosphatidylinositol 3-Kinases metabolism, Type C Phospholipases metabolism, Xenopus laevis, Synapses drug effects, Synapses physiology, Synaptic Transmission drug effects, Synaptic Transmission physiology, Tretinoin pharmacology
- Abstract
We have previously shown that retinoic acid (RA), a factor highly expressed in spinal cord, rapidly and specifically enhances the spontaneous acetylcholine release at developing neuromuscular synapses in Xenopus cell culture, using whole-cell patch-clamp recording. We have now further investigated the underlying mechanisms that are involved in RA-induced facilitation on the frequency of spontaneous synaptic currents (SSCs). Buffering the rise of intracellular Ca2+ with BAPTA-AM hampered the facilitation of SSC frequency induced by RA. The prompt RA-enhanced SSC frequency was not abolished when Ca2+ was eliminated from the culture medium or there was bath application of the pharmacological Ca2+ channel inhibitor Cd2+, indicating that Ca2+ influx through voltage-activated Ca2+ channels are not required. Application of membrane-permeable inhibitors of inositol 1,4,5-trisphosphate [Ins(1,4,5)P3] or ryanodine receptors effectively blocked the increase of SSC frequency elicited by RA. Treating cells with either wortmannin or LY294002, two structurally different inhibitors of phosphatidylinositol 3-kinase (PI 3-kinase) and with the phospholipase Cgamma (PLCgamma) inhibitor U73122, abolished RA-induced facilitation of synaptic transmission. Preincubation of the cultures with pharmacological inhibitors, either genistein, a broad-spectrum tyrosine kinase inhibitor, or PP2, which predominantly inhibits the Src family of nonreceptor tyrosine kinase, completely abolished RA-induced synaptic facilitation. Taken collectively, these results suggest that RA elicits Ca2+ release from Ins1,4,5P3 and/or ryanodine-sensitive intracellular Ca2+ stores of the presynaptic nerve terminal. This is done via PLCgamma/PI 3-kinase signaling cascades and Src tyrosine kinase activation, leading to an enhancement of spontaneous transmitter release.
- Published
- 2005
- Full Text
- View/download PDF