1. Long time behaviour of continuous-state nonlinear branching processes with catastrophes
- Author
-
Aline Marguet, Charline Smadi, Modeling, simulation, measurement, and control of bacterial regulatory networks (IBIS), Laboratoire Adaptation et pathogénie des micro-organismes [Grenoble] (LAPM), Centre National de la Recherche Scientifique (CNRS)-Université Joseph Fourier - Grenoble 1 (UJF)-Centre National de la Recherche Scientifique (CNRS)-Université Joseph Fourier - Grenoble 1 (UJF)-Inria Grenoble - Rhône-Alpes, Institut National de Recherche en Informatique et en Automatique (Inria)-Institut National de Recherche en Informatique et en Automatique (Inria)-Institut Jean Roget, Institut Fourier (IF), Centre National de la Recherche Scientifique (CNRS)-Université Grenoble Alpes (UGA), Laboratoire des EcoSystèmes et des Sociétés en Montagne (UR LESSEM), Institut National de Recherche pour l’Agriculture, l’Alimentation et l’Environnement (INRAE), ANR-16-CE33-0018,MEMIP,Modèles à effets mixtes de processus intracellulaires: méthodes, outils et applications(2016), ANR-20-CE40-0015,NOLO,Processus de branchement non-locaux(2020), Analyse, ingénierie et contrôle des micro-organismes (MICROCOSME), Inria Grenoble - Rhône-Alpes, Institut National de Recherche en Informatique et en Automatique (Inria)-Institut National de Recherche en Informatique et en Automatique (Inria)-Université Grenoble Alpes (UGA), Université Joseph Fourier - Grenoble 1 (UJF)-Centre National de la Recherche Scientifique (CNRS)-Université Joseph Fourier - Grenoble 1 (UJF)-Centre National de la Recherche Scientifique (CNRS)-Inria Grenoble - Rhône-Alpes, and Institut national de recherche en sciences et technologies pour l'environnement et l'agriculture (IRSTEA)
- Subjects
Statistics and Probability ,Population ,Markov process ,long time behaviour ,Population process ,01 natural sciences ,010104 statistics & probability ,symbols.namesake ,FOS: Mathematics ,Quantitative Biology::Populations and Evolution ,Statistical physics ,0101 mathematics ,Diffusion (business) ,education ,Mathematics ,education.field_of_study ,Population size ,Probability (math.PR) ,60J80, 60J85, 60H10 ,010102 general mathematics ,jumps ,Function (mathematics) ,State (functional analysis) ,[MATH.MATH-PR]Mathematics [math]/Probability [math.PR] ,Nonlinear system ,symbols ,Continuous-time and space branching Markov processes ,Statistics, Probability and Uncertainty ,explosion ,absorption ,Mathematics - Probability - Abstract
International audience; Motivated by the study of a parasite infection in a cell line, we introduce a general class of Markov processes for the modelling of population dynamics.The population process evolves as a diffusion with positive jumps whose rate is a function of the population size. It also undergoes catastrophic events which kill a fraction of the population, at a rate depending on the population state. We study the long time behaviour of this class of processes.
- Published
- 2021
- Full Text
- View/download PDF