1. Alterations in the transcriptome of porcine oocytes derived from prepubertal and cyclic females is associated with developmental potential.
- Author
-
Paczkowski M, Yuan Y, Fleming-Waddell J, Bidwell CA, Spurlock D, and Krisher RL
- Subjects
- Animals, Chi-Square Distribution, Female, Gene Expression Profiling methods, Gene Expression Profiling veterinary, Oligonucleotide Array Sequence Analysis veterinary, RNA chemistry, RNA genetics, Reverse Transcriptase Polymerase Chain Reaction veterinary, Sexual Maturation genetics, Swine genetics, Gene Expression Regulation, Developmental physiology, Oocytes physiology, Sexual Maturation physiology, Swine physiology
- Abstract
The developmental competence of oocytes is progressively attained as females approach puberty. The poor quality of prepubertally derived oocytes suggests that essential processes during cytoplasmic maturation have not been completed. The objective of this experiment was to identify genes in oocytes that are associated with good (cyclic females) and poor (prepubertal females) developmental competence. Development to the blastocyst stage in vitro was significantly decreased in oocytes derived from prepubertal females compared with cyclic females (5.26 and 12.86%, respectively). Approximately 10% of the oocyte transcriptome was differentially expressed between in vitro-matured oocytes derived from cyclic and prepubertal females (P < 0.05); 58% of differentially expressed genes had increased transcript abundance in oocytes derived from cyclic females. Genes involved in the metabolism and regulation of biological processes had increased transcript abundance in oocytes derived from cyclic females, whereas genes involved in translation were increased in prepubertally derived oocytes. Quantitative PCR confirmed differential expression (P < 0.05) for 6 out of 11 selected genes [DPYD (dihydropyrimidine dehydrogenase), RDH11 (retinol dehydrogenase 11), SFRS4 (serine/arginine-rich splicing factor 4), SFRS7 (serine/arginine-rich splicing factor 7), TL4 (transcribed loci 4), and TOP2B (topoisomerase II β)] that were differentially expressed with greater than a 2-fold change by microarray, although 3 of these genes, DPYD, TL4, and TOP2B, were in opposing directions by the 2 methods. In conclusion, expression of multiple genes involved in metabolism and translation was significantly altered in oocytes from prepubertal females compared with cyclic females, which was associated with reduced in vitro development to the blastocyst stage. These genes may represent important cellular mechanisms that regulate oocyte quality.
- Published
- 2011
- Full Text
- View/download PDF