Abstract Scene classification is considered as an imperative issue for computer vision and has got extensive consideration in the recent past. Due to recent developments in high performance computing units such as GPUs, popularly known deep learning algorithm namely, convolutional neural networks (CNNs), exploits huge datasets to give powerful models. The paper proposes the use of transfer learning technique, by which a pre-trained model known as Places-CNN is used to generate feature vectors for each scene image of the dataset. The scene-classification experiments are conducted on the Oliva Torralba (OT) scene dataset, which consists of eight outdoor scene categories. The features were extracted from the fully connected layer of the pre-trained Places CNN architecture. The deep features were extracted from the input color images and the grayscale images converted using two different techniques based on singular value decomposition (SVD). The results obtained from classification experiments show that, models trained on SVD-Decolorized and Modified-SVD decolorized images give comparable performance to the input color images. Unlike the color images, which use three planes (RGB) of information, the grayscale images use only one plane of information. The grayscale images were able to retain the required shape and texture information from the original RGB images and, thus sufficient to categorize the classes of scene images. [ABSTRACT FROM AUTHOR]