1. Deformable Catalytic Material Derived from Mechanical Flexibility for Hydrogen Evolution Reaction.
- Author
-
Wang, Fengshun, Xie, Lingbin, Sun, Ning, Zhi, Ting, Zhang, Mengyang, Liu, Yang, Luo, Zhongzhong, Yi, Lanhua, Zhao, Qiang, and Wang, Longlu
- Subjects
- *
ELECTROCATALYSTS , *CHEMICAL reactions , *CATALYTIC activity , *FLEXIBLE structures , *SURFACE strains , *CATALYSTS - Abstract
Highlights: The main effects of deformation of flexible catalytic materials on the catalytic hydrogen evolution reaction performance are discussed, and a series of novel strategies to design highly active catalysts based on the mechanical flexibility of low-dimensional nanomaterials are summarized in detail. This review provides a strategic choice for the rational design of low-cost and high-performance industrialized electrocatalysts. Deformable catalytic material with excellent flexible structure is a new type of catalyst that has been applied in various chemical reactions, especially electrocatalytic hydrogen evolution reaction (HER). In recent years, deformable catalysts for HER have made great progress and would become a research hotspot. The catalytic activities of deformable catalysts could be adjustable by the strain engineering and surface reconfiguration. The surface curvature of flexible catalytic materials is closely related to the electrocatalytic HER properties. Here, firstly, we systematically summarized self-adaptive catalytic performance of deformable catalysts and various micro–nanostructures evolution in catalytic HER process. Secondly, a series of strategies to design highly active catalysts based on the mechanical flexibility of low-dimensional nanomaterials were summarized. Last but not least, we presented the challenges and prospects of the study of flexible and deformable micro–nanostructures of electrocatalysts, which would further deepen the understanding of catalytic mechanisms of deformable HER catalyst. [ABSTRACT FROM AUTHOR]
- Published
- 2023
- Full Text
- View/download PDF