1. Monitoring green tea fixation quality by intelligent sensors: comparison of image and spectral information.
- Author
-
Chen, Yuyu, Wu, Huiting, Liu, Ying, Wang, Yujie, Lu, Chengye, Li, Tiehan, Wei, Yuming, and Ning, Jingming
- Subjects
GREEN tea ,EYE tracking ,SPECTRAL imaging ,INTELLIGENT sensors ,IMAGE sensors ,COMPUTER vision ,SUPPORT vector machines - Abstract
BACKGROUND: Intelligent monitoring of fixation quality is a prerequisite for automated green tea processing. To meet the requirements of intelligent monitoring of fixation quality in large‐scale production, fast and non‐destructive detection means are urgently needed. Here, smartphone‐coupled micro near‐infrared spectroscopy and a self‐built computer vision system were used to perform rapid detection of the fixation quality in green tea processing lines. RESULTS: Spectral and image information from green tea samples with different fixation degrees were collected at‐line by two intelligent monitoring sensors. Competitive adaptive reweighted sampling and correlation analysis were employed to select feature variables from spectral and color information as the target data for modeling, respectively. The developed least squares support vector machine (LS‐SVM) model by spectral information and the LS‐SVM model by image information achieved the best discriminations of sample fixation degree, with both prediction set accuracies of 100%. Compared to the spectral information, the image information‐based support vector regression model performed better in moisture prediction, with a correlation coefficient of prediction of 0.9884 and residual predictive deviation of 6.46. CONCLUSION: The present study provided a rapid and low‐cost means of monitoring fixation quality, and also provided theoretical support and technical guidance for the automation of the green tea fixation process. © 2022 Society of Chemical Industry. [ABSTRACT FROM AUTHOR]
- Published
- 2023
- Full Text
- View/download PDF