9 results on '"Garcia-Orellana, J."'
Search Results
2. Guidelines and Limits for the Quantification of Ra Isotopes and Related Radionuclides With the Radium Delayed Coincidence Counter (RaDeCC).
- Author
-
Diego‐Feliu, M., Rodellas, V., Alorda‐Kleinglass, A., Tamborski, J., Beek, P., Heins, L., Bruach, J. M., Arnold, R., and Garcia‐Orellana, J.
- Subjects
SCINTILLATORS ,PREDICATE calculus ,SCIENTIFIC community ,RADIUM isotopes ,ISOTOPES - Abstract
The Radium Delayed Coincidence Counter (RaDeCC) is one of the most extensively used equipment for measuring 223Ra and 224Ra activities in water and sediment samples. Samples are placed in a closed He‐circulation system that carries the Rn produced by the decay of Ra to a scintillation cell. Each alpha decay recorded in the cell is routed to an electronic delayed coincidence system which enables the discrimination of 223Ra and 224Ra. In this study, the measurement and quantification methods using the RaDeCC system are assessed through analyses of registered data in different RaDeCC systems worldwide and a set of simulations. Results of this work indicate that the equations used to correct for 223Ra and 224Ra cross‐talk interferences are only valid for a given range of activities and ratios between isotopes. Above certain limits that are specified in this study, these corrections may significantly overestimate the quantification of 223Ra and 224Ra activities (up to ~40% and 30%, respectively), as well as the quantification of their parents 227Ac and 228Th. High activities of 226Ra may also produce an overestimation of 224Ra activities due to the buildup of 222Rn, especially when long measurements with low activities of 224Ra are performed. An improved method to quantify 226Ra activities from the buildup of 222Rn with the RaDeCC system is also developed in this study. Wethus provide a new set of guidelines for the appropriate quantification of 223Ra, 224Ra, 227Ac, 228Th, and 226Ra with the RaDeCC system. Plain Language Summary: In the last decades, there has been a growing interest in using radioactive isotopes to evaluate environmental processes. Their concentrations in environmental settings can reveal information about provenance, path, time, and duration. In this scenario, the research in the techniques to measure isotopes from samples has played a key role. In 1996, the launching of the Radium Delayed Coincidence Counter (RaDeCC) facilitated the fast and precise measurement of Ra isotopes, which provide information on land‐ocean interaction processes (e.g., groundwater discharge to the sea and coastal residence times). Nowadays, this detector has become a fundamental tool for oceanographers, geochemist, and hydrologist among other scientific communities. Nevertheless, when the RaDeCC system was released, its quantification limits were not provided, and the recommendations on its use were mostly qualitative. More than 20 years later, we address these questions in a study that contains a comprehensive analysis of the RaDeCC counting mechanism and the determination of the limits of quantification. This study should serve as guidance for the measurement and quantification of Radium isotopes for the scientific community using the RaDeCC system. Key Points: The maximum quantification limits for 223Ra and 224Ra are 200 and 100 cpm in the total channel, respectivelyLimits for the quantification of 223Ra and 224Ra are provided when measurements are influenced by cross‐talk and 222Rn buildup effectThe understanding of RaDeCC counting systematics derived from simulations allowed improving the quantification of 226Ra via 222Rn buildup [ABSTRACT FROM AUTHOR]
- Published
- 2020
- Full Text
- View/download PDF
3. Ra-226 determination via the rate of Rn-222 ingrowth with the Radium Delayed Coincidence Counter (RaDeCC)
- Author
-
Geibert , W., Rodellas , V., Annett , A., Van Beek , P., Garcia-Orellana , J., Hsieh , Y. T., Masque , P., School of Geosciences [Edinburgh], University of Edinburgh, Institut de Ciencia i Tecnologia Ambientals (ICTA), Universitat Autònoma de Barcelona (UAB), GEOMAR LEGOS, Laboratoire d'études en Géophysique et océanographie spatiales (LEGOS), Institut de Recherche pour le Développement (IRD)-Université Toulouse III - Paul Sabatier (UT3), Université de Toulouse (UT)-Université de Toulouse (UT)-Institut national des sciences de l'Univers (INSU - CNRS)-Observatoire Midi-Pyrénées (OMP), Université de Toulouse (UT)-Université de Toulouse (UT)-Institut national des sciences de l'Univers (INSU - CNRS)-Centre National d'Études Spatiales [Toulouse] (CNES)-Centre National de la Recherche Scientifique (CNRS)-Météo-France -Institut de Recherche pour le Développement (IRD)-Institut national des sciences de l'Univers (INSU - CNRS)-Centre National d'Études Spatiales [Toulouse] (CNES)-Centre National de la Recherche Scientifique (CNRS)-Météo-France -Centre National de la Recherche Scientifique (CNRS)-Institut de Recherche pour le Développement (IRD)-Université Toulouse III - Paul Sabatier (UT3), Université de Toulouse (UT)-Université de Toulouse (UT)-Institut national des sciences de l'Univers (INSU - CNRS)-Centre National d'Études Spatiales [Toulouse] (CNES)-Centre National de la Recherche Scientifique (CNRS)-Météo-France -Institut de Recherche pour le Développement (IRD)-Institut national des sciences de l'Univers (INSU - CNRS)-Centre National d'Études Spatiales [Toulouse] (CNES)-Centre National de la Recherche Scientifique (CNRS)-Météo-France -Centre National de la Recherche Scientifique (CNRS), Departament de Física, Department of Earth Sciences [Oxford], University of Oxford, Institut de Ciència i Tecnologia Ambientals, Universitat Autònoma de Barcelona [Barcelona] ( UAB ), Laboratoire d'études en Géophysique et océanographie spatiales ( LEGOS ), Université Paul Sabatier - Toulouse 3 ( UPS ) -Centre National d'Etudes Spatiales ( CNES ) -Institut national des sciences de l'Univers ( INSU - CNRS ) -Observatoire Midi-Pyrénées ( OMP ) -Centre National de la Recherche Scientifique ( CNRS ) -Université Paul Sabatier - Toulouse 3 ( UPS ) -Centre National d'Etudes Spatiales ( CNES ) -Institut national des sciences de l'Univers ( INSU - CNRS ) -Observatoire Midi-Pyrénées ( OMP ) -Centre National de la Recherche Scientifique ( CNRS ), Department of Earth Sciences, University of Oxford [Oxford], Université Fédérale Toulouse Midi-Pyrénées-Université Fédérale Toulouse Midi-Pyrénées-Institut national des sciences de l'Univers (INSU - CNRS)-Observatoire Midi-Pyrénées (OMP), Météo France-Centre National d'Études Spatiales [Toulouse] (CNES)-Université Fédérale Toulouse Midi-Pyrénées-Centre National de la Recherche Scientifique (CNRS)-Institut de Recherche pour le Développement (IRD)-Météo France-Centre National d'Études Spatiales [Toulouse] (CNES)-Centre National de la Recherche Scientifique (CNRS)-Institut de Recherche pour le Développement (IRD)-Centre National de la Recherche Scientifique (CNRS)-Institut de Recherche pour le Développement (IRD)-Université Toulouse III - Paul Sabatier (UT3), and Météo France-Centre National d'Études Spatiales [Toulouse] (CNES)-Université Fédérale Toulouse Midi-Pyrénées-Centre National de la Recherche Scientifique (CNRS)-Institut de Recherche pour le Développement (IRD)-Météo France-Centre National d'Études Spatiales [Toulouse] (CNES)-Centre National de la Recherche Scientifique (CNRS)-Institut de Recherche pour le Développement (IRD)-Centre National de la Recherche Scientifique (CNRS)
- Subjects
[ SDU.OCEAN ] Sciences of the Universe [physics]/Ocean, Atmosphere ,[SDU.OCEAN]Sciences of the Universe [physics]/Ocean, Atmosphere ,SUBMARINE GROUNDWATER DISCHARGE ,SPECTROMETRY ,SEAWATER ,ISOTOPES ,FIBER ,COASTAL WATERS - Abstract
ISI Document Delivery No.: 278HU Times Cited: 0 Cited Reference Count: 23 Cited References: Annett AL, 2013, ANTARCT SCI, V25, P445, DOI 10.1017/S0954102012000892 Bourquin M, 2011, MAR CHEM, V126, P132, DOI 10.1016/j.marchem.2011.05.001 Burnett WC, 2006, SCI TOTAL ENVIRON, V367, P498, DOI 10.1016/j.scitotenv.2006.05.009 BUTTS J, 1988, MAR CHEM, V25, P349, DOI 10.1016/0304-4203(88)90115-6 Charette MA, 2012, LIMNOL OCEANOGR-METH, V10, P451, DOI 10.4319/lom.2012.10.451 Charette MA, 2001, LIMNOL OCEANOGR, V46, P465 Foster DA, 2004, MAR CHEM, V87, P59, DOI 10.1016/j.marchem.2004.02.003 Garcia-Solsona E, 2008, MAR CHEM, V109, P198, DOI 10.1016/j.marchem.2007.11.006 GIFFIN C, 1963, J GEOPHYS RES, V68, P1749, DOI 10.1029/JZ068i006p01749 Hsieh YT, 2011, J ANAL ATOM SPECTROM, V26, P1338, DOI 10.1039/c1ja10013k Ku TL, 2008, RADIOACTIV ENVIRONM, V13, P307, DOI 10.1016/S1569-4860(07)00009-5 KU TL, 1976, EARTH PLANET SC LETT, V32, P236, DOI 10.1016/0012-821X(76)90064-9 Moatar F, 2010, J RADIOANAL NUCL CH, V283, P3, DOI 10.1007/s10967-009-0001-2 Moore WS, 1996, J GEOPHYS RES-OCEANS, V101, P1321, DOI 10.1029/95JC03139 Moore WS, 2008, MAR CHEM, V109, P188, DOI 10.1016/j.marchem.2007.06.015 MOORE WS, 1995, GEOCHIM COSMOCHIM AC, V59, P4285, DOI 10.1016/0016-7037(95)00242-R Moore WS, 2003, BIOGEOCHEMISTRY, V66, P75, DOI 10.1023/B:BIOG.0000006065.77764.a0 Peterson RN, 2009, LIMNOL OCEANOGR-METH, V7, P196 Rama, 1996, GEOCHIM COSMOCHIM AC, V60, P4645 Rodellas V, 2012, J HYDROL, V466, P11, DOI 10.1016/j.jhydrol.2012.07.005 Sun Y, 1998, MAR CHEM, V62, P299, DOI 10.1016/S0304-4203(98)00019-X van Beek P, 2010, J ENVIRON RADIOACTIV, V101, P521, DOI 10.1016/j.jenvrad.2009.12.002 Waska H, 2008, J ENVIRON RADIOACTIV, V99, P1859, DOI 10.1016/j.jenvrad.2008.08.008 Geibert, Walter Rodellas, Valenti Annett, Amber van Beek, Pieter Garcia-Orellana, Jordi Hsieh, Yu-Te Masque, Pere Masque, Pere/B-7379-2008 Masque, Pere/0000-0002-1789-320X National Environmental Research Council through "UK Geotraces" [NE/H008497/1]; Scottish Alliance for GeoSciences and the Environment; MICINN (Spain) [AP2008-03044]; "Antarctic Science" research bursary, the British Antarctic Survey, NERC's Collaborative Gearing Scheme by the Natural Sciences and Engineering Research Council of Canada; "Antarctic Science" research bursary, the British Antarctic Survey, NERC's Collaborative Gearing Scheme by the University of Edinburgh; British Council-Egide "Alliance" scheme; prize ICREA Academia; Generalitat de Catalunya We would like to gratefully acknowledge support from funding agencies: W. G. and Y.-T. Hsieh from the National Environmental Research Council through "UK Geotraces" (NE/H008497/1); W. G. from the Scottish Alliance for GeoSciences and the Environment; V. R. for a PhD fellowship (AP2008-03044) from MICINN (Spain); A. A. from the "Antarctic Science" research bursary, the British Antarctic Survey, NERC's Collaborative Gearing Scheme, by the Natural Sciences and Engineering Research Council of Canada and by the University of Edinburgh; W. G., A. A., and P. v. B. received travel support from the British Council-Egide "Alliance" scheme; P. M. through the prize ICREA Academia, funded by the Generalitat de Catalunya. Thanks go to Gideon Henderson, Raja Ganeshram, and Michiel Rutgers van der Loeff; their contributions were essential to enable us to finish this manuscript. Three anonymous reviewers have provided helpful insights that contributed to improve the manuscript substantially. 0 AMER SOC LIMNOLOGY OCEANOGRAPHY WACO LIMNOL OCEANOGR-METH; We present a new method to determine Ra-226 in aqueous environmental samples, based on the rate of ingrowth of Rn-222 from Ra-226, using the radium delayed coincidence counter (RaDeCC). We use the same instrument setup that is used for the determination of Ra-223 and Ra-224. In contrast to methods published earlier, the approach does not require a modification of the counting equipment, counting separately for Ra-226, or waiting for radioactive equilibrium. We show that the calibration works from as low as 10 dpm (0.166 Bq) per sample, up to more than 1000 dpm (16.7 Bq). Although uncertainties are larger (typically around 10%) than reported uncertainties for gamma counting, liquid scintillation, or mass spectrometry at comparable activities, the simple setup, low cost, and robustness of the method make it a useful approach for underway measurements, combinations with short-lived radium isotopes, or monitoring purposes when limited funding or infrastructure is available.
- Published
- 2013
- Full Text
- View/download PDF
4. Using radium isotopes to characterize water ages and coastal mixing rates: A sensitivity analysis
- Author
-
Knee, K. L., Garcia-Solsona, E., Garcia-Orellana, J., Boehm, A. B., Paytan, A., Department of Geological Sciences [Stanford] (GS), Stanford EARTH, Stanford University-Stanford University, Laboratoire d'études en Géophysique et océanographie spatiales (LEGOS), Institut de Recherche pour le Développement (IRD)-Université Toulouse III - Paul Sabatier (UT3), Université Fédérale Toulouse Midi-Pyrénées-Université Fédérale Toulouse Midi-Pyrénées-Institut national des sciences de l'Univers (INSU - CNRS)-Observatoire Midi-Pyrénées (OMP), Météo France-Centre National d'Études Spatiales [Toulouse] (CNES)-Université Fédérale Toulouse Midi-Pyrénées-Centre National de la Recherche Scientifique (CNRS)-Institut de Recherche pour le Développement (IRD)-Météo France-Centre National d'Études Spatiales [Toulouse] (CNES)-Centre National de la Recherche Scientifique (CNRS)-Institut de Recherche pour le Développement (IRD)-Centre National de la Recherche Scientifique (CNRS), Institut de Ciencia i Tecnologia Ambientals (ICTA), Universitat Autònoma de Barcelona (UAB), Environmental and Water Studies, Stanford University, Institute of Marine Sciences, University of California [Santa Cruz] (UCSC), University of California-University of California, Université de Toulouse (UT)-Université de Toulouse (UT)-Institut national des sciences de l'Univers (INSU - CNRS)-Observatoire Midi-Pyrénées (OMP), Université de Toulouse (UT)-Université de Toulouse (UT)-Institut national des sciences de l'Univers (INSU - CNRS)-Centre National d'Études Spatiales [Toulouse] (CNES)-Centre National de la Recherche Scientifique (CNRS)-Météo-France -Institut de Recherche pour le Développement (IRD)-Institut national des sciences de l'Univers (INSU - CNRS)-Centre National d'Études Spatiales [Toulouse] (CNES)-Centre National de la Recherche Scientifique (CNRS)-Météo-France -Centre National de la Recherche Scientifique (CNRS), University of California [Santa Cruz] (UC Santa Cruz), and University of California (UC)-University of California (UC)
- Subjects
[SDU.OCEAN]Sciences of the Universe [physics]/Ocean, Atmosphere ,SUBMARINE GROUNDWATER DISCHARGE ,GROUNDWATER ,RESIDENCE TIME ,NUTRIENT DISCHARGE ,DIAGRAMS ,SURF ZONE ,FECAL ,DIFFUSION ,INDICATOR BACTERIA ,NEW-YORK ,NATURAL GEOCHEMICAL TRACERS ,CONTAMINATED ,SUBTERRANEAN ESTUARY - Abstract
ISI Document Delivery No.: 893TE Times Cited: 4 Cited Reference Count: 78 Cited References: Abraham DM, 2003, BIOL BULL-US, V205, P246, DOI 10.2307/1543277 Arega F, 2008, J HYDRO-ENVIRON RES, V2, P99, DOI 10.1016/j.jher.2008.07.003 Basu AR, 2001, SCIENCE, V293, P1470, DOI 10.1126/science.1060524 Beck AJ, 2007, MAR CHEM, V106, P419, DOI 10.1016/j.marchem.2007.03.008 Boehm AB, 2006, CONT SHELF RES, V26, P269, DOI 10.1016/j.csr.2005.11.008 Boehm AB, 2004, ENVIRON SCI TECHNOL, V38, P3558, DOI 10.1021/es035385a Breier JA, 2009, LIMNOL OCEANOGR, V54, P1964, DOI 10.4319/lo.2009.54.6.1964 Brooks DA, 1999, ESTUAR COAST SHELF S, V49, P647, DOI 10.1006/ecss.1999.0544 Burnett WC, 2008, ESTUAR COAST SHELF S, V76, P501, DOI 10.1016/j.ecss.2007.07.027 Burnett WC, 2006, SCI TOTAL ENVIRON, V367, P498, DOI 10.1016/j.scitotenv.2006.05.009 Charette MA, 2007, LIMNOL OCEANOGR, V52, P230 Charette MA, 2007, DEEP-SEA RES PT II, V54, P1989, DOI 10.1016/j.dsr2.2007.06.003 Charette MA, 2003, MAR CHEM, V84, P113, DOI 10.1016/j.marchem.2003.07.001 Charette MA, 2001, LIMNOL OCEANOGR, V46, P465 Colbert SL, 2007, CONT SHELF RES, V27, P1477, DOI 10.1016/j.csr.2007.01.003 Crotwell AM, 2003, AQUAT GEOCHEM, V9, P191, DOI 10.1023/B:AQUA.0000022954.89019.c9 de Sieyes NR, 2008, LIMNOL OCEANOGR, V53, P1434, DOI 10.4319/lo.2008.53.4.1434 Dulaiova H, 2008, MAR CHEM, V109, P395, DOI 10.1016/j.marchem.2007.09.001 Dulaiova H, 2006, CONT SHELF RES, V26, P1971, DOI 10.1016/j.csr.2006.07.011 GALLAGHER B, 1980, PAC SCI, V34, P301 Garcia-Orellana J, 2010, J ENVIRON RADIOACTIV, V101, P582, DOI 10.1016/j.jenvrad.2009.12.005 Garcia-Solsona E, 2008, MAR CHEM, V109, P292, DOI 10.1016/j.marchem.2008.02.007 Garcia-Solsona E, 2010, BIOGEOSCIENCES, V7, P2625, DOI 10.5194/bg-7-2625-2010 Garcia-Solsona E, 2008, MAR CHEM, V109, P198, DOI 10.1016/j.marchem.2007.11.006 Garcia-Solsona E, 2010, BIOGEOCHEMISTRY, V97, P211, DOI 10.1007/s10533-009-9368-y Godoy JM, 2006, J BRAZIL CHEM SOC, V17, P730, DOI 10.1590/S0103-50532006000400014 Gomes F. C., 2009, RADIOPROTECTION, V44, P237, DOI [10.1051/radiopro/20095047, DOI 10.1051/RADIOPRO/20095047] Gonneea ME, 2008, MAR CHEM, V109, P250, DOI 10.1016/j.marchem.2007.12.002 Hancock GJ, 1996, EARTH PLANET SC LETT, V138, P145, DOI 10.1016/0012-821X(95)00218-2 Hougham AL, 2007, MAR CHEM, V105, P194, DOI 10.1016/j.marchem.2007.01.013 Hwang DW, 2005, MAR CHEM, V96, P61, DOI 10.1016/j.marchem.2004.11.002 Kim G, 2008, MAR CHEM, V109, P307, DOI 10.1016/j.marchem.2007.07.002 Kim G, 2005, EARTH PLANET SC LETT, V237, P156, DOI 10.1016/j.epsl.2005.06.011 Knee KL, 2008, ESTUAR COAST, V31, P607, DOI 10.1007/s12237-008-9055-6 Knee KL, 2010, LIMNOL OCEANOGR, V55, P1105, DOI 10.4319/lo.2010.55.3.1105 Krest JM, 2000, GLOBAL BIOGEOCHEM CY, V14, P167, DOI 10.1029/1999GB001197 LEE DR, 1977, LIMNOL OCEANOGR, V22, P140 Lee YW, 2009, SCI TOTAL ENVIRON, V407, P3181, DOI 10.1016/j.scitotenv.2008.04.013 Li CY, 2011, J MARINE SYST, V86, P28, DOI 10.1016/j.jmarsys.2011.01.003 LI YH, 1979, EARTH PLANET SC LETT, V43, P343, DOI 10.1016/0012-821X(79)90089-X LONGUETHIGGINS MS, 1983, P ROY SOC LOND A MAT, V390, P283, DOI 10.1098/rspa.1983.0132 Loveless AM, 2008, J HYDROL, V351, P203, DOI 10.1016/j.jhydrol.2007.12.010 Monsen NE, 2002, LIMNOL OCEANOGR, V47, P1545 Montlucon D, 2001, ENVIRON SCI TECHNOL, V35, P480, DOI 10.1021/es9914442 Moore W. S., 2000, J GEOPHYS RES, V105, P117, DOI DOI 10.1029/1999JC000289 Moore WS, 2006, CONT SHELF RES, V26, P852, DOI 10.1016/j.csr.2005.12.004 Moore WS, 2008, ESTUAR COAST SHELF S, V76, P512, DOI 10.1016/j.ecss.2007.07.042 Moore WS, 2006, J GEOPHYS RES-OCEANS, V111, DOI 10.1029/2005JC003041 Moore WS, 2000, CONT SHELF RES, V20, P1993, DOI 10.1016/S0278-4343(00)00054-6 Moore WS, 1997, EARTH PLANET SC LETT, V150, P141, DOI 10.1016/S0012-821X(97)00083-6 MOORE WS, 1984, NUCL INSTRUM METH A, V223, P407, DOI 10.1016/0167-5087(84)90683-5 OKUBO A, 1976, DEEP-SEA RES, V23, P1213, DOI 10.1016/0011-7471(76)90897-4 OKUBO A, 1971, DEEP-SEA RES, V18, P789, DOI 10.1016/0011-7471(71)90046-5 Paytan A, 2006, LIMNOL OCEANOGR, V51, P343 Peterson RN, 2009, LIMNOL OCEANOGR, V54, P890, DOI 10.4319/lo.2009.54.3.0890 Peterson RN, 2008, CONT SHELF RES, V28, P2700, DOI 10.1016/j.csr.2008.09.002 Portnoy JW, 1998, WATER RESOUR RES, V34, P3095, DOI 10.1029/98WR02167 Rama, 1996, GEOCHIM COSMOCHIM AC, V60, P4645 Rapaglia J, 2010, J ENVIRON RADIOACTIV, V101, P571, DOI 10.1016/j.jenvrad.2009.08.010 Rasmussen L. L., 2003, THESIS MIT Robinson C, 2007, ADV WATER RESOUR, V30, P851, DOI 10.1016/j.advwatres.2006.07.006 Santos IR, 2008, J HYDROL, V353, P275, DOI 10.1016/j.jhydrol.2008.02.010 Scopel CO, 2006, J GREAT LAKES RES, V32, P543, DOI 10.3394/0380-1330(2006)32[543:IONWDA]2.0.CO;2 SHAW RD, 1989, LIMNOL OCEANOGR, V34, P1343 Shellenbarger GG, 2006, LIMNOL OCEANOGR, V51, P1876 Slomp CP, 2004, J HYDROL, V295, P64, DOI 10.1016/j.jhydrol.2004.02.018 Standley LJ, 2008, ENVIRON TOXICOL CHEM, V27, P2457, DOI 10.1897/07-604.1 STOMMEL H, 1949, J MAR RES, V8, P199 Street JH, 2008, MAR CHEM, V109, P355, DOI 10.1016/j.marchem.2007.08.009 Swarzenski PW, 2009, ESTUAR COAST SHELF S, V83, P77, DOI 10.1016/j.ecss.2009.03.027 Swarzenski PW, 2007, MAR CHEM, V104, P69, DOI 10.1016/j.marchem.2006.08.001 Swarzenski PW, 2006, MAR CHEM, V101, P248, DOI 10.1016/j.marchem.2006.03.007 Swearman J. W., 2006, PAPERS SUMMER UNDERG, P51 Taniguchi M, 2003, BIOGEOCHEMISTRY, V66, P35, DOI 10.1023/B:BIOG.0000006090.25949.8d Taylor J. R., 1997, INTRO ERROR ANAL, P160 Turner IL, 1997, J COASTAL RES, V13, P46 Weinstein Y., 2006, RADIOACT ENV, V8, P360, DOI DOI 10.1016/S1569-4860(05)08029-0 Windom HL, 2006, MAR CHEM, V102, P252, DOI 10.1016/j.marchem.2006.06.016 Knee, Karen L. Garcia-Solsona, Ester Garcia-Orellana, Jordi Boehm, Alexandria B. Paytan, Adina 4 AMER SOC LIMNOLOGY OCEANOGRAPHY WACO LIMNOL OCEANOGR-METH; Numerous studies have used naturally occurring Ra isotopes (Ra-223, Ra-224, Ra-226, and Ra-228, with half-lives of 11.4 d, 3.7 d, 1600 y, and 5.8 y, respectively) to quantify water mass ages, coastal ocean mixing rates, and submarine groundwater discharge (SGD). Using Monte Carlo models, this study investigated how uncertainties in Ra isotope activities and the derived activity ratios (AR) arising from analytical uncertainty and natural variability affect the uncertainty associated with Ra-derived water ages and eddy diffusion coefficients, both of which can be used to calculate SGD. Analytical uncertainties associated with Ra-224, Ra-226, and Ra-228 activities were reported in most published studies to be less than 10% of sample activity; those reported for Ra-223 ranged from 7% to 40%. Relative uncertainty related to natural variability-estimated from the variability in Ra-223 and Ra-224 activities of replicate field samples-ranged from 15% to 50% and was similar for Ra-223 activity, Ra-224 activity, and the Ra-224/Ra-223 AR. Our analysis revealed that AR-based water ages shorter than 3-5 d often have relative uncertainties greater than 100%, potentially limiting their utility. Uncertainties in eddy diffusion coefficients estimated based on cross-shore gradients in short-lived Ra isotope activity were greater when fewer points were used to determine the linear trend, when the coefficient of determination (R-2) was low, and when Ra-224, rather than Ra-223, was used. By exploring the uncertainties associated with Ra-derived water ages and eddy diffusion coefficients, this study will enable researchers to apply these methods more effectively and to reduce uncertainty.
- Published
- 2011
- Full Text
- View/download PDF
5. Time-series sampling of 223Ra and 224Ra at the inlet to Great South Bay (New York): a strategy for characterizing the dominant terms in the Ra budget of the bay
- Author
-
Garcia-Orellana, J., Cochran, J.K., Bokuniewicz, H., Yang, S., and Beck, A.J.
- Subjects
- *
TIME series analysis , *SAMPLING (Process) , *RADON isotopes , *GROUNDWATER flow , *MASS budget (Geophysics) - Abstract
Abstract: Ra isotopes are a powerful tool for quantifying the flux of submarine groundwater discharge (SGD) into the sea. Previous studies of 223Ra and 224Ra mass balances in coastal embayments have shown that the Ra balance is dominated by supply via SGD, exchange with the open ocean and radioactive decay. The current study shows that a single time series over a tidal cycle at the principal inlet to Great South Bay (NY, US) is sufficient to determine the net flux of Ra across the inlet, and also can be used to estimate the decay of short-lived Ra in the bay. Estimates of the net Ra flux obtained from a single tidal time-series by using three different approaches agree with those determined from a more time-consuming survey of Ra within the bay, and may represent a first step of estimating SGD in bays and coastal lagoons. [Copyright &y& Elsevier]
- Published
- 2010
- Full Text
- View/download PDF
6. Uncertainties associated with 223Ra and 224Ra measurements in water via a Delayed Coincidence Counter (RaDeCC)
- Author
-
Garcia-Solsona, E., Garcia-Orellana, J., Masqué, P., and Dulaiova, H.
- Subjects
- *
TRACERS (Chemistry) , *RADIUM , *ISOTOPES , *GROUNDWATER - Abstract
Abstract: The short-lived radium isotopes, 223Ra (T 1/2 =11.4 days) and 224Ra (T 1/2 =3.66 days), have been successfully used as tracers of several environmental processes, e.g., submarine groundwater discharge, coastal mixing processes, and water residence times. In this paper, the uncertainties associated with 223Ra and 224Ra measurements using a Radium Delayed Coincidence Counter are determined on a detailed error propagation basis with a confidence interval of 1σ. From the data analyses of several groups of coastal water samples, the calculated relative uncertainties averaged 12% for the 223Ra and 7% for the 224Ra. These uncertainties can decrease for radium-enriched groundwater samples although asymptotic limits have been found at 7% relative uncertainty for 223Ra and 4% for 224Ra. In this paper, the influence of sampling and measurement parameters on the final radium uncertainties is evaluated in order to provide guidance to optimize these factors and obtain more reliable results. [Copyright &y& Elsevier]
- Published
- 2008
- Full Text
- View/download PDF
7. Methodology of hydrogeological characterization of deep carbonate aquifers as potential reservoirs of groundwater. Case of study: the Jurassic aquifer of El Maestrazgo (Castellón, Spain).
- Author
-
Mejías, M., Garcia-Orellana, J., Plata, J., Marina, M., Garcia-Solsona, E., Ballesteros, B., Masqué, P., López, J., and Fernández-Arrojo, C.
- Subjects
AQUIFERS ,HYDROGEOLOGY ,REMOTE sensing ,INFRARED imaging ,STABLE isotopes ,WATER chemistry ,GROUNDWATER flow ,FLUID models in geophysics - Abstract
A methodology for the characterization of deep carbonate aquifers has been developed and applied to El Maestrazgo Jurassic aquifer in Castellón, Spain. Characterization of these aquifer formations, located at more than 300 m deep, consisted of a previous phase of compilation, analysis and synthesis of the existing information about the area, followed by a coordinated combination of different speciality studies: geology, stratigraphy, structural analysis, hydrogeology, hydrochemistry, geophysics and remote sensing. Geological studies included geological mapping, definition of stratigraphical units and facies and structural analysis. The aim of the hydrogeology study was to define aquifer formations, recharge area, aquifer points inventory and groundwater flow directions for the establishment of piezometric and water quality observation nets. Special techniques were applied, like thermal infrared aerial images and the evaluation of submarine groundwater discharge by means of natural radium isotopes. Hydrochemical techniques, including majority elements characterization and stable isotopes (
18 O,2 H and3 H) determination, allowed classifying hydrochemical facies and establishing a renewal pattern for water within the system. Geophysics was useful in determining the aquifer geometry, the features of the basement and the petrophysical characteristics of the geological formations. Preliminary results show an important tectonic complexity and the possibilities for groundwater uses in the area of study. [ABSTRACT FROM AUTHOR]- Published
- 2007
- Full Text
- View/download PDF
8. Estimating submarine groundwater discharge around Isola La Cura, northern Venice Lagoon (Italy), by using the radium quartet
- Author
-
Garcia-Solsona, E., Masqué, P., Garcia-Orellana, J., Rapaglia, J., Beck, A.J., Cochran, J.K., Bokuniewicz, H.J., Zaggia, L., and Collavini, F.
- Subjects
- *
RADIOACTIVE substances , *GROUNDWATER - Abstract
Abstract: The four naturally-occurring radium isotopes (223Ra, 224Ra, 226Ra and 228Ra) were used to estimate the submarine groundwater discharge (SGD) in the Isola La Cura marsh area in the northern Venice Lagoon (Italy). By determining the radium contributors to the study area (river, coastal ocean and sediments) the radium excess in the lagoon water was quantified through a mass balance model. This radium excess is attributed to a submarine groundwater discharge source and represents the most important input of radium. Possible endmembers were considered from analysis of groundwater samples (subtidal and marsh piezometers, marsh wells and seepage meters) that were enriched in Ra by one to two orders of magnitude relative to surface waters. In particular, a permeable layer at 80 cm depth in the surrounding marsh is considered to be representative of the most likely SGD source, although similar radium activities were measured in other subtidal porewater samples collected in the Isola La Cura area. The estimated SGD flux to the study area ranged from 1·109 to 6·109 L·d−1, the same order of magnitude as the overall riverine input to the lagoon (3·109 L·d−1). A major fraction of this SGD flux is likely recirculated seawater, as evidenced by the endmember salinity. The water residence time of 2 days was estimated by both using the shortest-lived radium isotope and estimating the volume of water exchanged between the lagoon and the open sea during a tidal cycle (tidal prism approach). This SGD flux could be used to estimate the input of other chemical species (metals, nutrients, etc.) via SGD which might affect the Venice Lagoon ecosystem. [Copyright &y& Elsevier]
- Published
- 2008
- Full Text
- View/download PDF
9. Combining fiber optic DTS, cross-hole ERT and time-lapse induction logging to characterize and monitor a coastal aquifer.
- Author
-
Folch, A., del Val, L., Luquot, L., Martínez-Pérez, L., Bellmunt, F., Le Lay, H., Rodellas, V., Ferrer, N., Palacios, A., Fernández, S., Marazuela, M.A., Diego-Feliu, M., Pool, M., Goyetche, T., Ledo, J., Pezard, P., Bour, O., Queralt, P., Marcuello, A., and Garcia-Orellana, J.
- Subjects
- *
AQUIFERS , *SALTWATER encroachment , *ELECTRICAL resistivity , *BOREHOLES , *ELECTRIC conductivity , *GROUNDWATER monitoring - Abstract
• A research site was built with 16 piezometers placed between 30 and 90 m from the shore. • New monitoring techniques were applied to improve coastal aquifers characterization. • CHERT allows a better definition of seawater intrusion than piezometers data. • The combination of these techniques allows a better spatial and temporal resolution. The characterization of saline water intrusion (SWI) and its hydrodynamics is a key issue to understand submarine groundwater discharge (SGD) and manage groundwater resources in coastal areas. To test and compare different methods of characterization and monitoring, a new experimental site has been constructed in a coastal alluvial aquifer north of Barcelona city (Catalonia, Spain). The site is located between 30 and 90 m from the seashore and comprises 16 shallow piezometers organized in nests of three with depths ranging between 15 and 25 m and 4 solitary piezometers. The objective of this paper is to combine different recently developed monitoring techniques to evaluate temporal variations in the aquifer hydrodynamics of the site at different spatial scales before and after the dry season of 2015. At the site scale, fibre optic distributed temperature sensing (FO-DTS), for the first time applied to study SWI, and cross-hole electrical resistivity tomography (CHERT) has been applied. At the meter/borehole scale, electrical conductivity of the formation has been applied not only in a repeated manner ("time lapse"), but also for the first time at relatively high frequency (1 sample every 10 min). CHERT has provided a better characterization of the seawater intrusion than electrical conductivity data obtained from piezometers. The combination of techniques has allowed improving the understanding of the system by: 1) characterizing the extent and shape of SWI; 2) differentiating two different dynamics in the aquifer; and 3) identifying preferential flow paths over different time and spatial intervals. Future challenges and the application of these techniques in other areas are also discussed. [ABSTRACT FROM AUTHOR]
- Published
- 2020
- Full Text
- View/download PDF
Catalog
Discovery Service for Jio Institute Digital Library
For full access to our library's resources, please sign in.