1. Hybrid Nanoparticle–Polymer Brush Composites for Detection of Low‐Level Radiostrontium in Water.
- Author
-
Bliznyuk, Valery N., Seliman, Ayman F., Husson, Scott M., Lvov, Yuri M., and DeVol, Timothy A.
- Subjects
POLYMERIC composites ,NANOPARTICLES ,STRONTIUM isotopes ,WATER chemistry ,SCINTILLATORS ,EXTRACTION (Chemistry) - Abstract
Abstract: Combining extraction and scintillation properties within the same material is a relatively new approach in development of sensors for detection of radioactive elements. Structural organization of such materials at a nanoscale typically offers higher efficiency of detection and shorter response time. In this contribution, several new protocols are discussed for fabrication of stable extractive scintillating systems based on commercial Superlig 620 (SL) material with high affinity to radiostrontium. Application of hybrid organic–inorganic beads with SL particles used as core and halloysite clay nanotubes (HNT) modified with a polyvinyltoluene (PVT) brush as a permeable shell combines high‐performance extracting properties of the SL material with efficient light emission properties of the polymer scintillator. The developed SL–HNT–PVT hybrid extractive scintillating material allows real‐time detection of low‐level concentrations of radiostrontium in water. Moreover, the suggested approach is not limited to detection of Sr but can find broader application in development of chemical, biological, or radioluminescent sensors and multifunctional materials. [ABSTRACT FROM AUTHOR]
- Published
- 2018
- Full Text
- View/download PDF