1. Association of Brain Age, Lesion Volume, and Functional Outcome in Patients With Stroke.
- Author
-
Liew SL, Schweighofer N, Cole JH, Zavaliangos-Petropulu A, Tavenner BP, Han LKM, Hahn T, Schmaal L, Donnelly MR, Jeong JN, Wang Z, Abdullah A, Kim JH, Hutton A, Barisano G, Borich MR, Boyd LA, Brodtmann A, Buetefisch CM, Byblow WD, Cassidy JM, Charalambous CC, Ciullo V, Conforto AB, Dacosta-Aguayo R, DiCarlo JA, Domin M, Dula AN, Egorova-Brumley N, Feng W, Geranmayeh F, Gregory CM, Hanlon CA, Hayward K, Holguin JA, Hordacre B, Jahanshad N, Kautz SA, Khlif MS, Kim H, Kuceyeski A, Lin DJ, Liu J, Lotze M, MacIntosh BJ, Margetis JL, Mataro M, Mohamed FB, Olafson ER, Park G, Piras F, Revill KP, Roberts P, Robertson AD, Sanossian N, Schambra HM, Seo NJ, Soekadar SR, Spalletta G, Stinear CM, Taga M, Tang WK, Thielman GT, Vecchio D, Ward NS, Westlye LT, Winstein CJ, Wittenberg GF, Wolf SL, Wong KA, Yu C, Cramer SC, and Thompson PM
- Subjects
- Humans, Aged, Cross-Sectional Studies, Brain diagnostic imaging, Magnetic Resonance Imaging methods, Neuroimaging, Stroke complications
- Abstract
Background and Objectives: Functional outcomes after stroke are strongly related to focal injury measures. However, the role of global brain health is less clear. In this study, we examined the impact of brain age, a measure of neurobiological aging derived from whole-brain structural neuroimaging, on poststroke outcomes, with a focus on sensorimotor performance. We hypothesized that more lesion damage would result in older brain age, which would in turn be associated with poorer outcomes. Related, we expected that brain age would mediate the relationship between lesion damage and outcomes. Finally, we hypothesized that structural brain resilience, which we define in the context of stroke as younger brain age given matched lesion damage, would differentiate people with good vs poor outcomes., Methods: We conducted a cross-sectional observational study using a multisite dataset of 3-dimensional brain structural MRIs and clinical measures from the ENIGMA Stroke Recovery. Brain age was calculated from 77 neuroanatomical features using a ridge regression model trained and validated on 4,314 healthy controls. We performed a 3-step mediation analysis with robust mixed-effects linear regression models to examine relationships between brain age, lesion damage, and stroke outcomes. We used propensity score matching and logistic regression to examine whether brain resilience predicts good vs poor outcomes in patients with matched lesion damage., Results: We examined 963 patients across 38 cohorts. Greater lesion damage was associated with older brain age (β = 0.21; 95% CI 0.04-0.38, p = 0.015), which in turn was associated with poorer outcomes, both in the sensorimotor domain (β = -0.28; 95% CI -0.41 to -0.15, p < 0.001) and across multiple domains of function (β = -0.14; 95% CI -0.22 to -0.06, p < 0.001). Brain age mediated 15% of the impact of lesion damage on sensorimotor performance (95% CI 3%-58%, p = 0.01). Greater brain resilience explained why people have better outcomes, given matched lesion damage (odds ratio 1.04, 95% CI 1.01-1.08, p = 0.004)., Discussion: We provide evidence that younger brain age is associated with superior poststroke outcomes and modifies the impact of focal damage. The inclusion of imaging-based assessments of brain age and brain resilience may improve the prediction of poststroke outcomes compared with focal injury measures alone, opening new possibilities for potential therapeutic targets., (Written work prepared by employees of the Federal Government as part of their official duties is, under the U.S. Copyright Act, a “work of the United States Government” for which copyright protection under Title 17 of the United States Code is not available. As such, copyright does not extend to the contributions of employees of the Federal Government.)
- Published
- 2023
- Full Text
- View/download PDF