1. On the Kelvin–Voigt model in anisotropic viscoelasticity.
- Author
-
Coco, Marco and Saccomandi, Giuseppe
- Subjects
- *
STRAINS & stresses (Mechanics) , *SYMMETRIC functions , *STOKES flow , *CREEP (Materials) , *VISCOELASTICITY , *MOTION - Abstract
We propose an anisotropic and nonlinear generalization of the Kelvin–Voigt viscoelastic model obtained considering the additive splitting of the Cauchy stress tensor in an elastic and a dissipative part. The former one corresponds to a fiber-reinforced hyperelastic material while the dissipative effect is described by the most general linear transverse-isotropic tensorial function of symmetric part of the velocity gradient. In a such a way we characterize the dissipative contribution via three viscoelastic moduli. We then show, by a detailed analysis of the simple shear quasistatic motion and the corresponding creep phenomena, that this motion may be used to determine experimentally the viscoelastic parameters. [ABSTRACT FROM AUTHOR]
- Published
- 2023
- Full Text
- View/download PDF