5 results on '"Hopper, Garrett W."'
Search Results
2. Species identity and diversity of filter‐feeding bivalves impact green and brown food webs.
- Author
-
Kubala, Megan E., Hopper, Garrett W., González, Irene Sánchez, Jackson, Colin R., Kuehn, Kevin A., Halvorson, Halvor M., and Atkinson, Carla L.
- Subjects
- *
SPECIES diversity , *NUTRIENT cycles , *BIVALVES , *BIOMASS , *MUSSELS , *UNIONIDAE - Abstract
In freshwater ecosystems, consumers can play large roles in nutrient cycling by modifying nutrient availability for autotrophic and heterotrophic microbes. Nutrients released by consumers directly support green food webs based on primary production and brown food webs based on decomposition. While much research has focused on impacts of consumer driven nutrient dynamics on green food webs, less attention has been given to studying the effects of these dynamics on brown food webs.Freshwater mussels (Bivalvia: Unionidae) can dominate benthic biomass in aquatic systems as they often occur in dense aggregations that create biogeochemical hotspots that can control ecosystem structure and function through nutrient release. However, despite functional similarities as filter‐feeders, mussels exhibit variation in nutrient excretion and tissue stoichiometry due in part to their phylogenetic origin. Here, we conducted a mesocosm experiment to evaluate how communities of three phylogenetically distinct species of mussels individually and collectively influence components of green and brown food webs.We predicted that the presence of mussels would elicit a positive response in both brown and green food webs by providing nutrients and energy via excretion and biodeposition to autotrophic and heterotrophic microbes. We also predicted that bottom‐up provisioning of nutrients would vary among treatments as a result of stoichiometric differences of species combinations, and that increasing species richness would lead to greater ecosystem functioning through complementarity resulting from greater trait diversity.Our results show that mussels affect the functioning of green and brown food webs through altering nutrient availability for both autotrophic and heterotrophic microbes. These effects are likely to be driven by phylogenetic constraints on tissue nutrient stoichiometry and consequential excretion stoichiometry, which can have functional effects on ecosystem processes. Our study highlights the importance of measuring multiple functional responses across a gradient of diversity in ecologically similar consumers to gain a more holistic view of aquatic food webs. [ABSTRACT FROM AUTHOR]
- Published
- 2024
- Full Text
- View/download PDF
3. Aggregated filter‐feeders govern the flux and stoichiometry of locally available energy and nutrients in rivers.
- Author
-
Hopper, Garrett W., Chen, Shuo, Sánchez González, Irene, Bucholz, Jamie R., Lu, YueHan, Atkinson, Carla L., and Gonzalez, Angélica
- Subjects
- *
DISSOLVED organic matter , *STOICHIOMETRY , *NUMBERS of species , *FLUX (Energy) , *FRESHWATER mussels , *ECOLOGICAL niche , *NUTRIENT cycles - Abstract
Biogeochemical cycling has often been characterized by physical and microbial processes, yet animals can be essential mediators of energy and nutrients in ecosystems. Excretion by aggregated animals can be an important local source of inorganic nutrients in green food webs; however, whether animals are a source of dissolved energy that can support brown food webs is understudied.We tested whether animal aggregations are a substantial flux of bioavailable dissolved organic matter (DOM) by studying spatially stable, biogeochemical hotspots formed by filter‐feeding freshwater mussels. We used parallel‐factor analysis to quantify DOM fluorescent components composition of mussel excretion and expected digestive breakdown of particulate food sources would lead to excretion of labile DOM. Next, we combined measured excretion rates of DOM, ammonium (NH4+, N) and phosphorous (SRP; P) for 22 species with biomass estimates for 14 aggregations to quantify contributions of DOM, N and P to local availability. Because mussels occupy distinct stoichiometric niches, we anticipated that differences in species biomass and assemblage structure would elicit different flux and stoichiometries of aggregate excretion.Aggregate dissolved organic carbon (DOC) excretion was minor (1%–11%) compared to N (12%–2,860%) and P (1%–97%), yet generalities across assemblages emerged regarding organic matter transformation by mussels towards labile protein‐like compounds compared to abundant aromatic, humic compounds in ambient water.Aggregate excretion of labile DOM was a substantial pool of bioavailable energy, contributing 2%–114% of local labile DOM. Spatial differences in assemblage structure led to strong differences in aggregate flux and stoichiometry driven by biomass and stoichiometric trait expression of species with contrasting dominance patterns.Under the nutrient conditions of our study (high C:nutrient), biogeochemical hotspots associated with low‐trophic position animal biomass may indirectly control energy flow to the brown food web by shifting C:nutrient stoichiometry available to microbes or directly by increasing the flux of microbially available DOM. Collectively, our results highlight a potentially substantial flux of labile energy and nutrients to microbial communities through the transformation of ingested organic matter by aggregations of animals and emphasize that shared functional trait classification may not translate into shared ecological function. A free Plain Language Summary can be found within the Supporting Information of this article. [ABSTRACT FROM AUTHOR]
- Published
- 2021
- Full Text
- View/download PDF
4. Biomass loss and change in species dominance shift stream community excretion stoichiometry during severe drought.
- Author
-
Hopper, Garrett W., Gido, Keith B., Pennock, Casey A., Hedden, Skyler C., Guinnip, James P., Fisher, Molly A., Tobler, Courtney M., Hedden, Crosby K., and Bruckerhoff, Lindsey A.
- Subjects
- *
NUTRIENT cycles , *BIOLOGICAL extinction , *BIOMASS , *DROUGHTS , *EXCRETION , *STOICHIOMETRY - Abstract
Animals contribute significantly to nutrient cycling through excretion, but most studies consider their effects under relatively benign abiotic conditions. Disturbances such as drought may alter animals' nutrient contributions through shifts in species composition and biomass. Headwater streams are particularly vulnerable to extreme climate events and thus might show rapid changes in stream biota and their ecosystem effects.We tested how biomass and subsequent ecosystem effects (nutrient cycling) of an intermittent prairie stream community changed during a drought. We quantified the biomass and contributions to nutrient cycling for assemblages comprising fishes, crayfish, and tadpoles in 12 isolated pools over 3 months encompassing the harshest drought on record for Kings Creek, KS, U.S.A. We predicted that macroconsumer biomass would decline with pool surface area and that differences in macroconsumer biomass and taxonomic composition would lead to different contributions of pool assemblages to nutrient cycling.The biomass of pool assemblages declined with decreasing pool size, a pattern apparently driven by mortality, emigration, or metamorphosis. We also observed a change in assemblage structure of drying pools during drought relative to pool size, shifting dominance toward species with more drought‐resistant traits. Accordingly, assemblage nitrogen (N) excretion rates declined as pool biomass was reduced, leading to a 58% reduction in N available to epilithic biofilms. Phosphorus (P) excretion rates declined from June to July, but increased in August, as species with high P excretion rates maintained similar proportional biomass and biomass of a non‐native fish increased. Molar N:P of pool assemblage excretion declined significantly throughout the drought and coincided with loss of southern redbelly dace (Chrosomus erythrogaster: Cyprinidae).Animal‐mediated nutrient cycling was altered by the loss of biomass and stoichiometric traits of taxa that differed in their occurrences and ability to tolerate abiotic conditions during drought. Elevated availability of dissolved N in isolated pools may increase N uptake rates by biofilms during drought conditions, indicating the importance of N excreted by aggregated macroconsumers, especially those with unique stoichiometric traits. While the significance of shifts in the composition of freshwater communities to ecosystems is not entirely known, additional losses in ecosystem function and changes in community structure may follow episodes of severe drought. [ABSTRACT FROM AUTHOR]
- Published
- 2020
- Full Text
- View/download PDF
5. Biomass distribution of fishes and mussels mediates spatial and temporal heterogeneity in nutrient cycling in streams.
- Author
-
Hopper, Garrett W., Gido, Keith B., Vaughn, Caryn C., Parr, Thomas B., Popejoy, Traci G., Atkinson, Carla L., and Gates, Kiza K.
- Subjects
- *
GEOGRAPHICAL distribution of fishes , *BIOGEOCHEMICAL cycles , *BIOMASS , *FISH dispersal , *FRESHWATER mussels , *STOICHIOMETRY ,VERTICAL distribution of fish - Abstract
Animals can play important roles in cycling nutrients [hereafter consumer-driven nutrient dynamics (CND)], but researchers typically simplify animal communities inhabiting dynamic environments into single groups that are tested under relatively static conditions. We propose a conceptual framework and present empirical evidence for CND that considers the potential effects of spatially overlapping animal groups within dynamic ecosystems. Because streams can maintain high biomass of mussels and fish, we were able to evaluate this framework by testing if biogeochemical hotspots generated by stable aggregations of mussels attract fishes. We predicted that spatial overlap between these groups may increase the flux of mineralized nutrients. We quantified how different fish assemblage biomass was between mussel bed reaches and reaches without mussels. We compared fish and mussel biomass at mussel beds to test whether differences in animal biomass mediate their contributions to nutrient cycling through nitrogen and phosphorous excretion. We estimated areal excretion rates for each group by combining biomass estimates with measured excretion rates. Fish biomass was homogeneously distributed, except following a period of low flow when fish were more concentrated at mussel beds. Mussel biomass was consistently an order of magnitude greater than fish biomass and mussel areal excretion rates exceeded fish excretion rates. However, the magnitude of those differences varied spatially and temporally. Mussel excretion stoichiometry varied with changes in assemblage composition, while fish excretion stoichiometry varied little. Biogeochemical hotspots associated with mussels did not generally overlap with fish aggregations, thus, under these conditions, animal processes appear to exert additive ecosystem effects. [ABSTRACT FROM AUTHOR]
- Published
- 2018
- Full Text
- View/download PDF
Catalog
Discovery Service for Jio Institute Digital Library
For full access to our library's resources, please sign in.