1. Influence of stent strut and its associated injury on thrombus formation: A dissipative particle dynamics study.
- Author
-
Wang J, Fan Z, Liu J, Liu K, Yan C, Ye X, and Deng X
- Subjects
- Humans, Blood Platelets, Models, Cardiovascular, Stents adverse effects, Thrombosis etiology
- Abstract
Vascular stent intervention is a pivotal treatment for coronary atherosclerosis, though in-stent thrombosis remains a significant postoperative complication with an unclear underlying mechanism. This study utilized dissipated particle dynamics analysis to investigate the impact of stent and its injury on platelet behavior. The findings suggest that thrombus formation upstream of the stent is mainly initiated by upstream arterial injury, which leads to increased platelet accumulation and activation in that area. While thrombosis downstream of the stent is more directly influenced by the stent itself. The morphology and size of in-stent thrombosis can vary significantly due to the different contributions of the stent and underlying injuries. Additionally, the volume of in-stent thrombosis is affected by the extent of the injury and the viscosity of platelets, showing a notable increase in volume with the lengthening of the injury area and rise in platelet viscosity. This study provides a novel theoretical framework for optimizing stent placement strategies and structural designs by examining the effects of stent struts and associated injuries on thrombus formation., Competing Interests: Declaration of competing interest The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper., (Copyright © 2024 Elsevier Ltd. All rights reserved.)
- Published
- 2024
- Full Text
- View/download PDF