1. Magnetic configuration effects on the Wendelstein 7-X stellarator
- Author
-
Dinklage A., Beidler C.D., Helander P., Fuchert G., Maassberg H., Rahbarnia K., Sunn Pedersen T., Turkin Y., Wolf R.C., Alonso A., Andreeva T., Blackwell B., Bozhenkov S., Buttenschon B., Czarnecka A., Effenberg F., Feng Y., Geiger J., Hirsch M., Hofel U., Jakubowski M., Klinger T., Knauer J., Kocsis G., Kramer-Flecken A., Kubkowska M., Langenberg A., Laqua H.P., Marushchenko N., Mollen A., Neuner U., Niemann H., Pasch E., Pablant N., Rudischhauser L., Smith H.M., Schmitz O., Stange T., Szepesi T., Weir G., Windisch T., Wurden G.A., Zhang D., Abramovic I., Akaslompolo S., Ali A., Belloso J.A., Aleynikov P., Aleynikova K., Alzbutas R., Anda G., Ascasibar E., Assmann J., Baek S.-G., Baldzuhn J., Banduch M., Barbui T., Barlak M., Baumann K., Behr W., Beidler C., Benndorf A., Bertuch O., Beurskens M., Biedermann C., Biel W., Birus D., Blanco E., Blatzheim M., Bluhm T., Bockenhoff D., Bolgert P., Borchardt M., Borsuk V., Boscary J., Bosch H.-S., Bottger L.-G., Brakel R., Brand H., Brandt C., Brauer T., Braune H., Brezinsek S., Brunner K.-J., Brunner B., Burhenn R., Bussiahn R., Bykov V., Cai Y., Calvo I., Cannas B., Cappa A., Card A., Carls A., Carraro L., Carvalho B., Castejon F., Charl A., Chernyshev F., Cianciosa M., Citarella R., Ciupinski L., Claps G., Cole M.J., Cordella F., Cseh G., Czermak A., Czerski K., Czerwinski M., Czymek G., da Molin A., da Silva A., Dammertz G., de la Pena A., Degenkolbe S., Denner P., Dittmar T., Dhard C.P., Dostal M., Drevlak M., Drewelow P., Drews P., Dudek A., Dundulis G., Durodie F., van Eeten P., Ehrke G., Endler M., Ennis D., Erckmann E., Esteban H., Estrada T., Fahrenkamp N., Feist J.-H., Fellinger J., Fernandes H., Fietz W.H., Figacz W., Fontdecaba J., Ford O., Fornal T., Frerichs H., Freund A., Fuhrer M., Funaba T., Galkowski A., Gantenbein G., Gao Y., Regana J.G., Garcia-Munoz M., Gates D., Gawlik G., Geiger B., Giannella V., Gierse N., Gogoleva A., Goncalves B., Goriaev A., Gradic D., Grahl M., Green J., Grosman A., Grote H., Gruca M., Grulke O., Guerard C., Hacker P., Haiduk L., Hammond K., Han X., Harberts F., Harris J.H., Hartfuss H.-J., Hartmann D., Hathiramani D., Hein B., Heinemann B., Heitzenroeder P., Henneberg S., Hennig C., Sanchez J.H., Hidalgo C., Holbe H., Hollfeld K.P., Holting A., Hoschen D., Houry M., Howard J., Huang X., Huber M., Huber V., Hunger H., Ida K., Ilkei T., Illy S., Israeli B., Ivanov A., Jablonski S., Jagielski J., Jelonnek J., Jenzsch H., Junghans P., Kacmarczyk J., Kaliatka T., Kallmeyer J.-P., Kamionka U., Karalevicius R., Kasahara H., Kasparek W., Kazakov Y., Kenmochi N., Keunecke M., Khilchenko A., Killer C., Kinna D., Kleiber R., Knaup M., Knieps A., Kobarg T., Kochl F., Kolesnichenko Y., Konies A., Koppen M., Koshurinov J., Koslowski R., Konig R., Koster F., Kornejew P., Koziol R., Kramer M., Krampitz R., Kraszewsk P., Krawczyk N., Kremeyer T., Krings T., Krom J., Krychowiak M., Krzesinski G., Ksiazek I., Kuhner G., Kurki-Suonio T., Kwak S., Landreman M., Lang R., Langish S., Laqua H., Laube R., Lazerson S., Lechte C., Lennartz M., Leonhardt W., Lewerentz L., Liang Y., Linsmeier C., Liu S., Lobsien J.-F., Loesser D., Cisquella J.L., Lore J., Lorenz A., Losert M., Lubyako L., Lucke A., Lumsdaine A., Lutsenko V., Maisano-Brown J., Marchuk O., Mardenfeld M., Marek P., Marsen S., Marushchenko M., Masuzaki S., Maurer D., McCarthy K., McNeely P., Meier A., Mellein D., Mendelevitch B., Mertens P., Mikkelsen D., Mishchenko O., Missal B., Mittelstaedt J., Mizuuchi T., Moncada V., Monnich T., Morisaki T., Moseev D., Munk R., Murakami S., Musielok F., Nafradi G., Nagel M., Naujoks D., Neilson H., Neubauer O., Ngo T., Nocentini R., Nuhrenberg C., Nuhrenberg J., Obermayer S., Offermanns G., Ogawa K., Ongena J., Oosterbeek J.W., Orozco G., Otte M., Rodriguez L.P., Pan W., Panadero N., Alvarez N.P., Panin A., Papenfuss D., Paqay S., Pavone A., Pawelec E., Pelka G., Peng X., Perseo V., Peterson B., Pieper A., Pilopp D., Pingel S., Pisano F., Plaum B., Plunk G., Povilaitis M., Preinhaelter J., Proll J., Puiatti M.-E., Sitjes A.P., Purps F., Rack M., Recsei S., Reiman A., Reiter D., Remppel F., Renard S., Riedl R., Riemann J., Rimkevicius S., Risse K., Rodatos A., Rohlinger H., Rome M., Rong P., Roscher H.-J., Roth B., Rummel K., Rummel T., Runov A., Rust N., Ryc L., Ryosuke S., Sakamoto R., Samartsev A., Sanchez M., Sano F., Satake S., Satheeswaran G., Schacht J., Schauer F., Scherer T., Schlaich A., Schlisio G., Schluter K.-H., Schmitt J., Schmitz H., Schmuck S., Schneider M., Schneider W., Scholz M., Scholz P., Schrittwieser R., Schroder M., Schroder T., Schroeder R., Schumacher H., Schweer B., Shanahan B., Shikhovtsev I.V., Sibilia M., Sinha P., Siplia S., Skodzik J., Slaby C., Smith H., Spiess W., Spong D.A., Spring A., Stadler R., Standley B., Stephey L., Stoneking M., Stridde U., Sulek Z., Pedersen T.S., Suzuki Y., Svensson J., Szabo V., Szabolics T., Szokefalvi-Nagy Z., Tamura N., Terra A., Terry J., Thomas J., Thomsen H., Thumm M., von Thun C.P., Timmermann D., Titus P., Toi K., Travere J.M., Traverso P., Tretter J., Mora H.T., Tsuchiya H., Tsujimura T., Tulipan S., Turnyanskiy M., Unterberg B., Urban J., Urbonavicius E., Vakulchyk I., Valet S., van Milligen B., Vela L., Velasco J.-L., Vergote M., Vervier M., Vianello N., Viebke H., Vilbrandt R., Vorkorper A., Wadle S., Wang E., Wang N., Warmer F., Wauters T., Wegener L., Weggen J., Wegner T., Wei Y., Wendorf J., Wenzel U., Wiegel B., Wilde F., Winkler E., Winters V., Wolf R., Wolf S., Wolowski J., Wright A., Wurden G., Xanthopoulos P., Yamada H., Yamada I., Yasuhara R., Yokoyama M., Zajac J., Zarnstorff M., Zeitler A., Zhang H., Zhu J., Zilker M., Zimbal A., Zocco A., Zoletnik S., Zuin M., W7-X Team, Max Planck Institute for Plasma Physics, Max Planck Society, Science and Technology of Nuclear Fusion, and Turbulence in Fusion Plasmas
- Subjects
Physics ,Tokamak ,Field (physics) ,General Physics and Astronomy ,Plasma ,7. Clean energy ,01 natural sciences ,010305 fluids & plasmas ,Bootstrap current ,Computational physics ,Magnetic field ,law.invention ,Magnetic mirror ,Wendelstein 7-X stellarator ,Physics and Astronomy (all) ,law ,Physics::Plasma Physics ,0103 physical sciences ,Wendelstein 7-X plasmas ,Wendelstein 7-X ,010306 general physics ,Stellarator - Abstract
The two leading concepts for confining high-temperature fusion plasmas are the tokamak and the stellarator. Tokamaks are rotationally symmetric and use a large plasma current to achieve confinement, whereas stellarators are non-axisymmetric and employ three-dimensionally shaped magnetic field coils to twist the field and confine the plasma. As a result, the magnetic field of a stellarator needs to be carefully designed to minimize the collisional transport arising from poorly confined particle orbits, which would otherwise cause excessive power losses at high plasma temperatures. In addition, this type of transport leads to the appearance of a net toroidal plasma current, the so-called bootstrap current. Here, we analyse results from the first experimental campaign of the Wendelstein 7-X stellarator, showing that its magnetic-field design allows good control of bootstrap currents and collisional transport. The energy confinement time is among the best ever achieved in stellarators, both in absolute figures (τE > 100 ms) and relative to the stellarator confinement scaling. The bootstrap current responds as predicted to changes in the magnetic mirror ratio. These initial experiments confirm several theoretically predicted properties of Wendelstein 7-X plasmas, and already indicate consistency with optimization measures. Results from the first experimental campaign of the Wendelstein 7-X stellarator demonstrate that its magnetic-field design grants good control of parasitic plasma currents, leading to long energy confinement times.
- Published
- 2018
- Full Text
- View/download PDF