Thierry Gobron, Lucie Fajfrova, Ellen Saada, Institute of Information Theory and Automation of the Czech Academy of Sciences (UTIA / CAS), Czech Academy of Sciences [Prague] (CAS), Laboratoire de Physique Théorique et Modélisation (LPTM - UMR 8089), Centre National de la Recherche Scientifique (CNRS)-CY Cergy Paris Université (CY), Mathématiques Appliquées Paris 5 (MAP5 - UMR 8145), Université Paris Descartes - Paris 5 (UPD5)-Institut National des Sciences Mathématiques et de leurs Interactions (INSMI)-Centre National de la Recherche Scientifique (CNRS), ANR-07-BLAN-0230 (ANR LHMSHE), ANR-2010-BLAN-0108 (ANR SHEPI), Grant Agency of the Czech Republic under Grants P201/12/2613 and 16-15238S, Institute of Information Theory and Automation, Academy of Sciences of the Czech Republic, Université de Cergy Pontoise (UCP), Université Paris-Seine-Université Paris-Seine-Centre National de la Recherche Scientifique (CNRS), Laboratoire de Physique Théorique et Modélisation ( LPTM ), Université de Cergy Pontoise ( UCP ), Université Paris-Seine-Université Paris-Seine-Centre National de la Recherche Scientifique ( CNRS ), Mathématiques Appliquées à Paris 5 ( MAP5 - UMR 8145 ), and Université Paris Descartes - Paris 5 ( UPD5 ) -Institut National des Sciences Mathématiques et de leurs Interactions-Centre National de la Recherche Scientifique ( CNRS )
We introduce the Mass Migration Process (MMP), a conservative particle system on ${\mathbb N}^{{\mathbb Z}^d}$. It consists in jumps of $k$ particles ($k\ge 1$) between sites, with a jump rate depending only on the state of the system at the departure and arrival sites of the jump. It generalizes misanthropes processes, hence in particular zero range and target processes. After the construction of MMP, our main focus is on its invariant measures. We obtain necessary and sufficient conditions for the existence of translation-invariant and invariant product probability measures. In the particular cases of asymmetric mass migration zero range and mass migration target dynamics, these conditions yield explicit solutions. If these processes are moreover attractive, we obtain a full characterization of all translation-invariant, invariant probability measures. We also consider attractiveness properties (through couplings) and condensation phenomena for MMP. We illustrate our results on many examples; in particular, we prove the coexistence of both condensation and attractiveness in one of them., 46 pages