10 results on '"Baudin, F"'
Search Results
2. Red Giants observed with CoRoT.
- Author
-
Hekker, S., De Ridded, J., Baudin, F., Barban, C., Carrier, F., Hatzes, A. P., Kallinger, T., and Weiss, W. W.
- Subjects
STARS ,ASTROPHYSICS ,RED giants ,STELLAR oscillations ,ASTRONOMICAL photometry ,SEISMOLOGY - Abstract
Observations of red (G-K)-giant stars with the CoRoT satellite provide unprecedented information on the stochastically excited oscillations in these stars. The long time series of nearly uninterrupted high-cadence and high-precision photometry revealed the presence of non-radial modes with long lifetimes, which opens the possibility to perform asteroseismology on these stars. Also, the large number of red giants, for which solar-like oscillations are now observed, allows for a more statistical investigation of the characteristics of solar-like oscillations in red giants. [ABSTRACT FROM AUTHOR]
- Published
- 2009
- Full Text
- View/download PDF
3. An in-depth study of HD 174966 with CoRoT photometry and HARPS spectroscopy Large separation as a new observable for δ Scuti stars.
- Author
-
García Hernández, A., Moya, A., Michel, E., Suárez, J. C., Poretti, E., Martín-Ruíz, S., Amado, P. J., Garrido, R., Rodríguez, E., Rainer, M., Uytterhoeven, K., Rodrigo, C., Solano, E., Rodón, J. R., Mathias, P., Rolland, A., Auvergne, M., Baglin, A., Baudin, F., and Catala, C.
- Subjects
STARS ,ASTRONOMICAL photometry ,ASTRONOMICAL spectroscopy ,FREQUENCY spectra ,PHYSICAL cosmology ,MATHEMATICAL models - Abstract
Aims. The aim of this work was to use a multi-approach technique to derive the most accurate values possible of the physical parameters of the δ Sct star HD174966, which was observed with the CoRoT satellite. In addition, we searched for a periodic pattern in the frequency spectra with the goal of using it to determine the mean density of the star. Methods. First, we extracted the frequency content from the CoRoT light curve. Then, we derived the physical parameters of HD174966 and carried a mode identification out from the spectroscopic and photometric observations. We used this information to look for the models fulfilling all the conditions and discussed the inaccuracies of the method because of the rotation effects. In a final step, we searched for patterns in the frequency set using a Fourier transform, discussed its origin, and studied the possibility of using the periodicity to obtain information about the physical parameters of the star. Results. A total of 185 peaks were obtained from the Fourier analysis of the CoRoT light curve, all of which were reliable pulsating frequencies. From the spectroscopic observations, 18 oscillation modes were detected and identified, and the inclination angle (62.5°
+7.5 -17.5 ) were estimated. From the multi-colour photometric observations, only three frequencies were detected that correspond to the main ones in the CoRoT light curve. We looked for periodicities within the 185 frequencies and found a quasiperiodic pattern ▵ v ~ 64 μHz. Using the inclination angle, the rotational velocity, and an Echelle diagram (showing a double comb outside the asymptotic regime), we concluded that the periodicity corresponds to a large separation structure. The quasiperiodic pattern allowed us to discriminate models from a grid. As a result, the value of the mean density is achieved with a 6% uncertainty. So, the ▵ v pattern could be used as a new observable for A-F type stars. [ABSTRACT FROM AUTHOR]-1 ) were estimated. From the multi-colour photometric observations, only three frequencies were detected that correspond to the main ones in the CoRoT light curve. We looked for periodicities within the 185 frequencies and found a quasiperiodic pattern ▵ v ~ 64 μHz. Using the inclination angle, the rotational velocity, and an Echelle diagram (showing a double comb outside the asymptotic regime), we concluded that the periodicity corresponds to a large separation structure. The quasiperiodic pattern allowed us to discriminate models from a grid. As a result, the value of the mean density is achieved with a 6% uncertainty. So, the ▵ v pattern could be used as a new observable for A-F type stars. [ABSTRACT FROM AUTHOR]- Published
- 2013
- Full Text
- View/download PDF
4. High-precision CoRoT space photometry and fundamental parameter determination of the B2.5V star HD48977.
- Author
-
Thoul, A., Degroote, P., Catala, C., Aerts, C., Morel, T., Briquet, M., Hillen, M., Raskin, G., Van Winckel, H., Auvergne, M., Baglin, A., Baudin, F., and Michel, E.
- Subjects
STELLAR structure ,STELLAR oscillations ,ASTRONOMICAL photometry ,SPACE photography ,PHOTOMETRIC stereo - Abstract
We present the CoRoT light curve of the bright B2.5V star HD48977 observed during a short run of the mission in 2008, as well as a high-resolution spectrum gathered with the HERMES spectrograph at the Mercator telescope. We use several time series analysis tools to explore the nature of the variations in the light curve.We performed a detailed analysis of the spectrum of the star to determine its fundamental parameters and its element abundances. We find a large number of high-order g-modes, and one rotationally induced frequency. We find stable low-amplitude frequencies in the p-mode regime as well. We conclude that HD48977 is a new slowly pulsating B star with fundamental parameters found to be T
eff = 20 000 ± 1000 K and log g = 4.2 ± 0.1. The element abundances are similar to those found for other B stars in the solar neighbourhood. HD48977 was observed during a short run of the CoRoT satellite implying that the frequency precision is insufficient to perform asteroseismic modelling of the star. Nevertheless, we show that a longer time series of this star would be promising for such modelling. Our present study contributes to a detailed mapping of the instability strips of B stars in view of the dominance of g-mode pulsations in the star, several of which occur in the gravito-inertial regime [ABSTRACT FROM AUTHOR]- Published
- 2013
- Full Text
- View/download PDF
5. Amplitudes of solar-like oscillations in red giant stars. Evidence for non-adiabatic effects using CoRoT observations.
- Author
-
Samadi, R., Belkacem, K., Dupret, M.-A., Ludwig, H.-G., Baudin, F., Caffau, E., Goupil, M.-J., and Barban, C.
- Subjects
RED giant spectra ,SOLAR oscillations ,POWER resources ,ADIABATIC flow ,STELLAR luminosity function - Abstract
Context. A growing number of solar-like oscillations has been detected in red giant stars thanks to the CoRoT and Kepler space-crafts. In the same way as for main-sequence stars, mode driving is attributed to turbulent convection in the uppermost convective layers of those stars. Aims. The seismic data gathered by CoRoT on red giant stars allow us to test the mode driving theory in physical conditions different from main-sequence stars. Methods. Using a set of 3D hydrodynamical models representative of the upper layers of sub- and red giant stars, we computed the acoustic mode energy supply rate (). Assuming adiabatic pulsations and using global stellar models that assume that the surface stratification comes from the 3D hydrodynamical models, we computed the mode amplitude in terms of surface velocity. This was converted into intensity fluctuations using either a simplified adiabatic scaling relation or a non-adiabatic one. Results. From L and M (the luminosity and mass), the energy supply rate is found to scale as (L/M)
2.6 for both main-sequence and red giant stars, extending previous results. The theoretical amplitudes in velocity under-estimate the Doppler velocity measurements obtained so far from the ground for red giant stars by about 30%. In terms of intensity, the theoretical scaling law based on the adiabatic intensity-velocity scaling relation results in an under-estimation by a factor of about 2.5 with respect to the CoRoT seismic measurements. On the other hand, using the non-adiabatic intensity-velocity relation significantly reduces the discrepancy with the CoRoT data. The theoretical amplitudes remain 40% below, however, the CoRoT measurements. Conclusions. Our results show that scaling relations of mode amplitudes cannot be simply extended from main-sequence to red giant stars in terms of intensity on the basis of adiabatic relations because non-adiabatic effects for red giant stars are important and cannot be neglected. We discuss possible reasons for the remaining differences. [ABSTRACT FROM AUTHOR]- Published
- 2012
- Full Text
- View/download PDF
6. The CoRoT B-type binary HD 50230: a prototypical hybrid pulsator with g-mode period and p-mode frequency spacings.
- Author
-
Degroote, P., Aerts, C., Michel, E., Briquet, M., Pápics, P. I., Amado, P., Mathias, P., Poretti, E., Rainer, M., Lombaert, R., Hillen, M., Morel, T., Auvergne, M., Baglin, A., Baudin, F., Catala, C., and Samadi, R.
- Subjects
B stars ,PULSATING stars ,STELLAR oscillations ,FOURIER transforms ,FOURIER analysis ,GRAVITY - Abstract
Context. B-type stars are promising targets for asteroseismic modelling, since their frequency spectrum is relatively simple. Aims. We deduce and summarise observational constraints for the hybrid pulsator, HD 50230, earlier reported to have deviations from a uniform period spacing of its gravity modes. The combination of spectra and a high-quality light curve measured by the CoRoT satellite allow a combined approach to fix the position of HD 50230 in the HR diagram. Methods. To describe the observed pulsations, classical Fourier analysis was combined with short-time Fourier transformations and frequency spacing analysis techniques. Visual spectra were used to constrain the projected rotation rate of the star and the fundamental parameters of the target. In a first approximation, the combined information was used to interpret multiplets and spacings to infer the true surface rotation rate and a rough estimate of the inclination angle. Results. We identify HD 50230 as a spectroscopic binary and characterise the two components. We detect the simultaneous presence of high-order g modes and low-order p and g-modes in the CoRoT light curve, but were unable to link them to line profile variations in the spectroscopic time series. We extract the relevant information from the frequency spectrum, which can be used for seismic modelling, and explore possible interpretations of the pressure mode spectrum. [ABSTRACT FROM AUTHOR]
- Published
- 2012
- Full Text
- View/download PDF
7. Gravito-inertial and pressure modes detected in the B3IV CoRoT target HD43317.
- Author
-
Pápics, P. I., Briquet, M., Baglin, A., Poretti, E., Aerts, C., Degroote, P., Tkachenko, A., Morel, T., Zima, W., Niemczura, E., Rainer, M., Hareter, M., Baudin, F., Catala, C., Michel, E., Samadi, R., and Auvergne, M.
- Subjects
STARS ,SPECTRUM analysis ,STELLAR activity ,ASTROPHYSICS ,TIME series analysis - Abstract
Context. OB stars are important building blocks of the Universe, but we have only a limited sample of them well understood enough from an asteroseismological point of view to provide feedback on the current evolutionary models. Our study adds one special case to this sample, with more observational constraints than for most of these stars. Aims. Our goal is to analyse and interpret the pulsational behaviour of the B3?IV star HD?43317 using the CoRoT light curve along with the ground-based spectroscopy gathered by the HARPS instrument. This way we continue our efforts to map the β?Cep and SPB instability strips. Methods. We used different techniques to reveal the abundances and fundamental stellar parameters from the newly-obtained high-resolution spectra. We used various time-series analysis tools to explore the nature of variations present in the light curve. We calculated the moments and used the pixel-by-pixel method to look for line profile variations in the high-resolution spectra. Results. We find that HD?43317 is a single fast rotator (v
rot ≈ 50% ? vcrit ) and hybrid SPB/β?Cep-type pulsator with Solar metal abundances. We interpret the variations in photometry and spectroscopy as a result of rotational modulation connected to surface inhomogeneities, combined with the presence of both g and p mode pulsations. We detect a series of ten consecutive frequencies with an almost constant period spacing of 6339?s as well as a second shorter sequence consisting of seven frequencies with a spacing of 6380?s. The dominant frequencies fall in the regime of gravito-inertial modes. [ABSTRACT FROM AUTHOR]- Published
- 2012
- Full Text
- View/download PDF
8. Pulsation spectrum of δ Scuti stars: the binary HD 50870 as seen with CoRoT and HARPS.
- Author
-
Mantegazza, L., Poretti, E., Michel, E., Rainer, M., Baudin, F., García Hernández, A., Semaan, T., Alvarez, M., Amado, P. J., Garrido, R., Mathias, P., Moya, A., Suárez, J. C., Auvergne, M., Baglin, A., Catala, C., and Samadi, R.
- Subjects
STELLAR oscillations ,ASTRONOMICAL observations ,HIGH resolution spectroscopy ,PHOTOMETRY ,ASTROPHYSICS - Abstract
Aims. We present the results obtained with the CoRoT satellite for HD 50870, a δ Sct star which was observed for 114.4 d. The aim of these observations was to evaluate the results obtained for HD 50844, the first S Sct star monitored with CoRoT, on a longer time baseline. Methods. The 307,570 CoRoT datapoints were analysed with different techniques. The photometric observations were complemented over 15 nights of high-resolution spectroscopy with HARPS on a baseline of 25 d. These spectra were analysed to study the line profile variations and to derive the stellar physical parameters. Some uvby photometric observations were also obtained to better characterize the pulsation modes. Results. HD 50870 proved to be a low-amplitude, long-period spectroscopic binary system seen almost pole-on (i ≃ 21°). The brighter component, which also has the higher rotational velocity (v sin i = 37.5 km s
-1 ), is a δ Sct-type variable with a full light amplitude variation of about 0.04 mag. There is a dominant axisymmetric mode (17.16 d-1 ). Moreover, there are two groups of frequencies (about 19) in the intervals 6-9 and 13-18 d-1 , with amplitudes ranging from a few mmag to 0.3 mmag. After the detection of about 250 terms (corresponding to an amplitude of about 0.045 mmag) a flat plateau appears in the power spectrum in the low-frequency region up to about 35 d-1 We were able to detect this plateau only thanks to the short cadence sampling of the CoRoT measurements (32 s). The density distribution vs. frequency of the detected frequencies seems to rule out the possibility that this plateau is the result of a process with a continuum power spectrum. The spacings of the strongest modes suggest a quasi-periodic pattern. We failed to find a satisfactory seismic model that simultaneously matches the frequency range, the position in the HR diagram, and the quasi-periodic pattern interpreted as a large separation. Nineteen modes were detected spectroscopically from the line profile variations and associated to the photometric ones. Tentative l, m values have been attributed to the modes detected spectroscopically. Prograde as well as retrograde modes are present with C values up to 9. There are no traces of variability induced by solar-like oscillations. [ABSTRACT FROM AUTHOR]- Published
- 2012
- Full Text
- View/download PDF
9. Modelling a high-mass red giant observed by CoRoT.
- Author
-
Baudin, F., Barban, C., Goupil, M. J., Samadi, R., Lebreton, Y., Bruntt, H., Morel, T., Lefèvre, L., Michel, E., Mosser, B., Carrier, F., De Ridder, J., Hatzes, A., Hekker, S., Kallinger, T., Auvergne, M., Baglin, A., and Catala, C.
- Subjects
- *
RED giants , *PHOTOMETERS , *NOBLE gases , *RADIOACTIVITY , *ASTROPHYSICS - Abstract
Context. The advent of space-borne photometers such as CoRoT and Kepler has opened up new fields in asteroseismology. This is especially true for red giants as only a few of these stars were known to oscillate with small amplitude, solar-like oscillations before the launch of CoRoT. Aims. The G6 giant HR2582 (HD50890) was observed by CoRoT for approximately 55 days. We present here the analysis of its light curve and the characterisation of the star using different observables, such as its location in the Hertzsprung-Russell diagram and seismic observables. Methods. Mode frequencies are extracted from the observed Fourier spectrum of the light curve. Numerical stellar models are then computed to determine the characteristics of the star (mass, age, etc.) from the comparison with observational constraints. Results. We provide evidence for the presence of solar-like oscillations at low frequency, between 10 and 20 μHz, with a regular spacing of (1.7±0.1) μHz between consecutive radial orders. Only radial modes are clearly visible. From the models compatible with the observational constraints used here,We find that HR2582 (HD50890) is a massive star with a mass in the range (3-5 M☉), clearly above the red clump. It oscillates with rather low radial order (n = 5-12) modes. Its evolutionary stage cannot be determined with precision: the star could be on the ascending red giant branch (hydrogen shell burning) with an age of approximately 155 Myr or in a later phase (helium burning). In order to obtain a reasonable helium amount, the metallicity of the star must be quite subsolar. Our best models are obtained with a mixing length significantly smaller than that obtained for the Sun with the same physical description (except overshoot). The amount of core overshoot during the main-sequence phase is found to be mild, of the order of 0.1 Hp. Conclusions. HR 2582 (HD50890) is an interesting case as only a few massive stars can be observed due to their rapid evolution compared to less massive red giants. HR2582 (HD50890) is also one of the few cases that can be used to validate the scaling relations for massive red giants stars and its sensitivity to the physics of the star. [ABSTRACT FROM AUTHOR]
- Published
- 2012
- Full Text
- View/download PDF
10. PLATO as it is: a legacy mission for Galactic archaeology
- Author
-
A. Miglio, C. Chiappini, B. Mosser, G. R. Davies, K. Freeman, L. Girardi, P. Jofré, D. Kawata, B. M. Rendle, M. Valentini, L. Casagrande, W. J. Chaplin, G. Gilmore, K. Hawkins, B. Holl, T. Appourchaux, K. Belkacem, D. Bossini, K. Brogaard, M.‐J. Goupil, J. Montalbán, A. Noels, F. Anders, T. Rodrigues, G. Piotto, D. Pollacco, H. Rauer, C. Allende Prieto, P. P. Avelino, C. Babusiaux, C. Barban, B. Barbuy, S. Basu, F. Baudin, O. Benomar, O. Bienaymé, J. Binney, J. Bland‐Hawthorn, A. Bressan, C. Cacciari, T. L. Campante, S. Cassisi, J. Christensen‐Dalsgaard, F. Combes, O. Creevey, M. S. Cunha, R. S. Jong, P. Laverny, S. Degl'Innocenti, S. Deheuvels, É. Depagne, J. Ridder, P. Di Matteo, M. P. Di Mauro, M.‐A. Dupret, P. Eggenberger, Y. Elsworth, B. Famaey, S. Feltzing, R. A. García, O. Gerhard, B. K. Gibson, L. Gizon, M. Haywood, R. Handberg, U. Heiter, S. Hekker, D. Huber, R. Ibata, D. Katz, S. D. Kawaler, H. Kjeldsen, D. W. Kurtz, N. Lagarde, Y. Lebreton, M. N. Lund, S. R. Majewski, P. Marigo, M. Martig, S. Mathur, I. Minchev, T. Morel, S. Ortolani, M. H. Pinsonneault, B. Plez, P. G. Prada Moroni, D. Pricopi, A. Recio‐Blanco, C. Reylé, A. Robin, I. W. Roxburgh, M. Salaris, B. X. Santiago, R. Schiavon, A. Serenelli, S. Sharma, V. Silva Aguirre, C. Soubiran, M. Steinmetz, D. Stello, K. G. Strassmeier, P. Ventura, R. Ventura, N. A. Walton, C. C. Worley, Institut d'Astrophysique et de Géophysique [Liège], Université de Liège, Laboratoire d'études spatiales et d'instrumentation en astrophysique (LESIA), Université Pierre et Marie Curie - Paris 6 (UPMC)-Institut national des sciences de l'Univers (INSU - CNRS)-Observatoire de Paris, Université Paris sciences et lettres (PSL)-Université Paris sciences et lettres (PSL)-Université Paris Diderot - Paris 7 (UPD7)-Centre National de la Recherche Scientifique (CNRS), Arizona State University [Tempe] (ASU), Leibniz-Institut für Astrophysik Potsdam (AIP), Department of Physics and Astronomy [Aarhus], Aarhus University [Aarhus], School of Physics and Astronomy [Birmingham], University of Birmingham [Birmingham], Heckscher-Klinikum, Danish AsteroSeismology Centre (DASC), Universidade Federal de São Paulo (UNIFESP), DLR Institut für Planetenforschung, Deutsches Zentrum für Luft- und Raumfahrt [Berlin] (DLR), Department of Astronomy [New Haven], Yale University [New Haven], Evolution et Modélisation des Bassins Sédimentaires (EMBS), Institut des Sciences de la Terre de Paris (iSTeP), Université Pierre et Marie Curie - Paris 6 (UPMC)-Centre National de la Recherche Scientifique (CNRS)-Université Pierre et Marie Curie - Paris 6 (UPMC)-Centre National de la Recherche Scientifique (CNRS), Department of Biomedical, Metabolic and Neural Sciences [Modena], Chaire Galaxies et cosmologie, Collège de France (CdF (institution)), Institut d'astrophysique spatiale (IAS), Université Paris-Sud - Paris 11 (UP11)-Institut national des sciences de l'Univers (INSU - CNRS)-Centre National de la Recherche Scientifique (CNRS), Universidade de Aveiro, Joseph Louis LAGRANGE (LAGRANGE), Université Côte d'Azur (UCA)-Université Nice Sophia Antipolis (... - 2019) (UNS), COMUE Université Côte d'Azur (2015-2019) (COMUE UCA)-COMUE Université Côte d'Azur (2015-2019) (COMUE UCA)-Observatoire de la Côte d'Azur, COMUE Université Côte d'Azur (2015-2019) (COMUE UCA)-Université Côte d'Azur (UCA)-Institut national des sciences de l'Univers (INSU - CNRS)-Centre National de la Recherche Scientifique (CNRS), Institut de recherche en astrophysique et planétologie (IRAP), Institut national des sciences de l'Univers (INSU - CNRS)-Université Toulouse III - Paul Sabatier (UT3), Université Fédérale Toulouse Midi-Pyrénées-Université Fédérale Toulouse Midi-Pyrénées-Observatoire Midi-Pyrénées (OMP), Météo France-Centre National d'Études Spatiales [Toulouse] (CNES)-Université Fédérale Toulouse Midi-Pyrénées-Centre National de la Recherche Scientifique (CNRS)-Institut de Recherche pour le Développement (IRD)-Météo France-Centre National d'Études Spatiales [Toulouse] (CNES)-Centre National de la Recherche Scientifique (CNRS)-Institut de Recherche pour le Développement (IRD)-Centre National de la Recherche Scientifique (CNRS), Las Cumbres Observatory (LCO), Observatoire Astronomique de l'Université de Genève (ObsGE), Université de Genève (UNIGE), Université de Strasbourg (UNISTRA), Observatoire astronomique de Strasbourg (ObAS), Université de Strasbourg (UNISTRA)-Institut national des sciences de l'Univers (INSU - CNRS)-Centre National de la Recherche Scientifique (CNRS), Universitat de Girona (UdG), Max-Planck-Institut für Extraterrestrische Physik (MPE), Max-Planck-Institut für Sonnensystemforschung (MPS), Max-Planck-Gesellschaft, SETI Institute, University of Illinois at Urbana Champaign (UIUC), University of Illinois at Urbana-Champaign [Urbana], University of Illinois System-University of Illinois System, Universidade Federal de Santa Catarina = Federal University of Santa Catarina [Florianópolis] (UFSC), Univers, Transport, Interfaces, Nanostructures, Atmosphère et environnement, Molécules (UMR 6213) (UTINAM), Université de Franche-Comté (UFC), Université Bourgogne Franche-Comté [COMUE] (UBFC)-Université Bourgogne Franche-Comté [COMUE] (UBFC)-Centre National de la Recherche Scientifique (CNRS)-Institut national des sciences de l'Univers (INSU - CNRS), Institut de Physique de Rennes (IPR), Université de Rennes 1 (UR1), Université de Rennes (UNIV-RENNES)-Université de Rennes (UNIV-RENNES)-Centre National de la Recherche Scientifique (CNRS), Space Science Institute [Boulder] (SSI), Department of Astronomy (Ohio State University), Ohio State University [Columbus] (OSU), Laboratoire Univers et Particules de Montpellier (LUPM), Université Montpellier 2 - Sciences et Techniques (UM2)-Institut National de Physique Nucléaire et de Physique des Particules du CNRS (IN2P3)-Université de Montpellier (UM)-Centre National de la Recherche Scientifique (CNRS), Astrophysical Research Institute [Liverpool], Liverpool John Moore University (ljmu), Institute of Space Sciences [Barcelona] (ICE-CSIC), Spanish National Research Council [Madrid] (CSIC), Sydney Institute for Astronomy (SIfA), The University of Sydney, M2A 2017, Laboratoire d'Astrophysique de Bordeaux [Pessac] (LAB), Université de Bordeaux (UB)-Institut national des sciences de l'Univers (INSU - CNRS)-Centre National de la Recherche Scientifique (CNRS)-Université de Bordeaux (UB)-Institut national des sciences de l'Univers (INSU - CNRS)-Centre National de la Recherche Scientifique (CNRS), Leibniz Institute for Astrophysics Potsdam (AIP), Symbiose Marine (SM), Evolution Paris Seine, Université des Antilles et de la Guyane (UAG)-Université Pierre et Marie Curie - Paris 6 (UPMC)-Université Nice Sophia Antipolis (... - 2019) (UNS), COMUE Université Côte d'Azur (2015-2019) (COMUE UCA)-COMUE Université Côte d'Azur (2015-2019) (COMUE UCA)-Centre National de la Recherche Scientifique (CNRS)-Université des Antilles et de la Guyane (UAG)-Université Pierre et Marie Curie - Paris 6 (UPMC)-Université Nice Sophia Antipolis (... - 2019) (UNS), COMUE Université Côte d'Azur (2015-2019) (COMUE UCA)-COMUE Université Côte d'Azur (2015-2019) (COMUE UCA)-Centre National de la Recherche Scientifique (CNRS), DNRF106, The Danish National Research Foundation, Centre National d’Etudes Spatiales, PRIN INAF 2014 - CRA 1.05.01.94.05, Science and Technology Facilities Council, Programme National Cosmologie et Galaxies (CNRS/INSU, France), IF/00894/2012/, Federación Española de Enfermedades Raras, CNES Fellowship, 615604, ERC Consolidator (STARKEY), Federaal Wetenschapsbeleid, ESP2015-66134-R, Ministerio de Economía y Competitividad, European Commission's Seventh Framework Programme, Swedish National Space Board, European Commission, DLR, FT1400147, Australian Research Council, NNX16AI09G, National Aeronautics and Space Administration, European Cooperation in Science and Technology, CH1188/2-1, DFG, CA16117, ChETEC COST Action, 10118, Villum Fonden, European Union FP7 program, 320360, ERC, UID/FIS/04434/2013, FCT, G1502, NYUAD Institute, Programme National de Physique Stellaire (PNPS), ITA, USA, GBR, FRA, DEU, ESP, Federal University of Sao Paulo (Unifesp), Université Paris-Saclay, Institut national des sciences de l'Univers (INSU - CNRS)-Université Paris-Saclay-Centre National de la Recherche Scientifique (CNRS)-Centre National d’Études Spatiales [Paris] (CNES), Collège de France - Chaire Galaxies et cosmologie, Université Paris-Sud - Paris 11 (UP11)-Institut national des sciences de l'Univers (INSU - CNRS)-Centre National de la Recherche Scientifique (CNRS)-Centre National d’Études Spatiales [Paris] (CNES), Université Nice Sophia Antipolis (1965 - 2019) (UNS), COMUE Université Côte d'Azur (2015-2019) (COMUE UCA)-COMUE Université Côte d'Azur (2015-2019) (COMUE UCA)-Institut national des sciences de l'Univers (INSU - CNRS)-Observatoire de la Côte d'Azur, COMUE Université Côte d'Azur (2015-2019) (COMUE UCA)-Université Côte d'Azur (UCA)-Université Côte d'Azur (UCA)-Centre National de la Recherche Scientifique (CNRS), Université Toulouse III - Paul Sabatier (UT3), Université de Toulouse (UT)-Université de Toulouse (UT)-Institut national des sciences de l'Univers (INSU - CNRS)-Observatoire Midi-Pyrénées (OMP), Institut de Recherche pour le Développement (IRD)-Université Toulouse III - Paul Sabatier (UT3), Université de Toulouse (UT)-Université de Toulouse (UT)-Institut national des sciences de l'Univers (INSU - CNRS)-Centre National d'Études Spatiales [Toulouse] (CNES)-Centre National de la Recherche Scientifique (CNRS)-Météo-France -Institut de Recherche pour le Développement (IRD)-Institut national des sciences de l'Univers (INSU - CNRS)-Centre National d'Études Spatiales [Toulouse] (CNES)-Centre National de la Recherche Scientifique (CNRS)-Météo-France -Centre National de la Recherche Scientifique (CNRS), Université de Genève = University of Geneva (UNIGE), Max-Planck-Institut für Sonnensystemforschung = Max Planck Institute for Solar System Research (MPS), Galaxies, Etoiles, Physique, Instrumentation (GEPI), Institut national des sciences de l'Univers (INSU - CNRS)-Observatoire de Paris, University of Illinois System, Institut national des sciences de l'Univers (INSU - CNRS)-Centre National de la Recherche Scientifique (CNRS)-Université de Franche-Comté (UFC), Université Bourgogne Franche-Comté [COMUE] (UBFC)-Université Bourgogne Franche-Comté [COMUE] (UBFC), Université de Rennes (UR)-Centre National de la Recherche Scientifique (CNRS), Institut National de Physique Nucléaire et de Physique des Particules du CNRS (IN2P3)-Université de Montpellier (UM)-Centre National de la Recherche Scientifique (CNRS), Université des Antilles et de la Guyane (UAG)-Université Pierre et Marie Curie - Paris 6 (UPMC)-Université Nice Sophia Antipolis (1965 - 2019) (UNS), COMUE Université Côte d'Azur (2015-2019) (COMUE UCA)-COMUE Université Côte d'Azur (2015-2019) (COMUE UCA)-Centre National de la Recherche Scientifique (CNRS)-Université des Antilles et de la Guyane (UAG)-Université Pierre et Marie Curie - Paris 6 (UPMC)-Université Nice Sophia Antipolis (1965 - 2019) (UNS), Miglio A., Chiappini C., Mosser B., Davies G.R., Freeman K., Girardi L., Jofre P., Kawata D., Rendle B.M., Valentini M., Casagrande L., Chaplin W.J., Gilmore G., Hawkins K., Holl B., Appourchaux T., Belkacem K., Bossini D., Brogaard K., Goupil M.-J., Montalban J., Noels A., Anders F., Rodrigues T., Piotto G., Pollacco D., Rauer H., Prieto C.A., Avelino P.P., Babusiaux C., Barban C., Barbuy B., Basu S., Baudin F., Benomar O., Bienayme O., Binney J., Bland-Hawthorn J., Bressan A., Cacciari C., Campante T.L., Cassisi S., Christensen-Dalsgaard J., Combes F., Creevey O., Cunha M.S., Jong R.S., Laverny P., Degl'Innocenti S., Deheuvels S., Depagne E., Ridder J., Matteo P.D., Mauro M.P.D., Dupret M.-A., Eggenberger P., Elsworth Y., Famaey B., Feltzing S., Garcia R.A., Gerhard O., Gibson B.K., Gizon L., Haywood M., Handberg R., Heiter U., Hekker S., Huber D., Ibata R., Katz D., Kawaler S.D., Kjeldsen H., Kurtz D.W., Lagarde N., Lebreton Y., Lund M.N., Majewski S.R., Marigo P., Martig M., Mathur S., Minchev I., Morel T., Ortolani S., Pinsonneault M.H., Plez B., Moroni P.G.P., Pricopi D., Recio-Blanco A., Reyle C., Robin A., Roxburgh I.W., Salaris M., Santiago B.X., Schiavon R., Serenelli A., Sharma S., Aguirre V.S., Soubiran C., Steinmetz M., Stello D., Strassmeier K.G., Ventura P., Ventura R., Walton N.A., Worley C.C., Université Côte d'Azur (UCA)-COMUE Université Côte d'Azur (2015-2019) (COMUE UCA)-Institut national des sciences de l'Univers (INSU - CNRS)-Centre National de la Recherche Scientifique (CNRS), Centre National de la Recherche Scientifique (CNRS)-Université de Montpellier (UM)-Institut National de Physique Nucléaire et de Physique des Particules du CNRS (IN2P3)-Université Montpellier 2 - Sciences et Techniques (UM2), Université Nice Sophia Antipolis (... - 2019) (UNS), and COMUE Université Côte d'Azur (2015-2019) (COMUE UCA)-COMUE Université Côte d'Azur (2015-2019) (COMUE UCA)-Centre National de la Recherche Scientifique (CNRS)-Université des Antilles et de la Guyane (UAG)-Université Pierre et Marie Curie - Paris 6 (UPMC)
- Subjects
RED-GIANT STARS ,Astrophysics ,01 natural sciences ,COROT ASTEROSEISMOLOGY FIELDS ,Astrophysics::Solar and Stellar Astrophysics ,VELOCITY EXPERIMENT RAVE ,Galaxy: structure ,010303 astronomy & astrophysics ,SUN-LIKE STAR ,QC ,QB ,Physics ,structure - stars: abundances - stars: fundamental parameters - stars: oscillations - surveys [Galaxy] ,Astrophysics - Solar and Stellar Astrophysics ,stars: fundamental parameters ,stars: oscillations ,Astrophysics::Earth and Planetary Astrophysics ,SOLAR-LIKE OSCILLATIONS ,THICK DISK ,stars: abundances ,Relation (database) ,DATA RELEASE ,Milky Way ,surveys ,Astronomy and Astrophysics ,Space and Planetary Science ,FOS: Physical sciences ,MILKY-WAY DISK ,F500 ,Kepler ,Asteroseismology ,ATMOSPHERIC PARAMETERS ,Settore FIS/05 - Astronomia e Astrofisica ,0103 physical sciences ,Quality (philosophy) ,Galaxy: structure â stars: abundances â stars: fundamental parameters â stars: oscillations â surveys ,Solar and Stellar Astrophysics (astro-ph.SR) ,Astrophysics::Galaxy Astrophysics ,010308 nuclear & particles physics ,Galaxy: structure – stars: abundances – stars: fundamental parameters – stars: oscillations – surveys ,[PHYS.ASTR.SR]Physics [physics]/Astrophysics [astro-ph]/Solar and Stellar Astrophysics [astro-ph.SR] ,Data science ,Astrophysics - Astrophysics of Galaxies ,Galaxy ,COLD DARK-MATTER ,Stars ,Astrophysics of Galaxies (astro-ph.GA) ,Stellar physics ,Galaxy: structure â stars: abundances â stars: fundamental parameters â stars: oscillations â surveys ,Galaxy: structure - stars: abundances - stars: fundamental parameters - stars: oscillations - surveys - Abstract
Deciphering the assembly history of the Milky Way is a formidable task, which becomes possible only if one can produce high-resolution chrono-chemo-kinematical maps of the Galaxy. Data from large-scale astrometric and spectroscopic surveys will soon provide us with a well-defined view of the current chemo-kinematical structure of the Milky Way, but will only enable a blurred view on the temporal sequence that led to the present-day Galaxy. As demonstrated by the (ongoing) exploitation of data from the pioneering photometric missions CoRoT, Kepler, and K2, asteroseismology provides the way forward: solar-like oscillating giants are excellent evolutionary clocks thanks to the availability of seismic constraints on their mass and to the tight age-initial-mass relation they adhere to. In this paper we identify five key outstanding questions relating to the formation and evolution of the Milky Way that will need precise and accurate ages for large samples of stars to be addressed, and we identify the requirements in terms of number of targets and the precision on the stellar properties that are needed to tackle such questions. By quantifying the asteroseismic yields expected from PLATO for red-giant stars, we demonstrate that these requirements are within the capabilities of the current instrument design, provided that observations are sufficiently long to identify the evolutionary state and allow robust and precise determination of acoustic-mode frequencies. This will allow us to harvest data of sufficient quality to reach a 10% precision in age. This is a fundamental pre-requisite to then reach the more ambitious goal of a similar level of accuracy, which will only be possible if we have to hand a careful appraisal of systematic uncertainties on age deriving from our limited understanding of stellar physics, a goal which conveniently falls within the main aims of PLATO's core science., 17 pages, 9 figures, accepted for publication in Astronomical Notes
- Published
- 2017
Catalog
Discovery Service for Jio Institute Digital Library
For full access to our library's resources, please sign in.