1. In vitro activity of the anthelmintic drug niclosamide against Sporothrix spp. strains with distinct genetic and antifungal susceptibility backgrounds.
- Author
-
Ramos MLM, Almeida-Silva F, de Souza Rabello VB, Nahal J, Figueiredo-Carvalho MHG, Bernardes-Engemann AR, Poester VR, Xavier MO, Meyer W, Zancopé-Oliveira RM, Frases S, and Almeida-Paes R
- Subjects
- Sporotrichosis microbiology, Sporotrichosis drug therapy, Genotype, Humans, Drug Resistance, Fungal, Drug Synergism, Sporothrix drug effects, Sporothrix genetics, Sporothrix classification, Niclosamide pharmacology, Antifungal Agents pharmacology, Microbial Sensitivity Tests, Anthelmintics pharmacology
- Abstract
The drugs available to treat sporotrichosis, an important yet neglected fungal infection, are limited. Some Sporothrix spp. strains present reduced susceptibility to these antifungals. Furthermore, some patients may not be indicated to use these drugs, while others may not respond to the therapy. The anthelmintic drug niclosamide is fungicidal against the Sporothrix brasiliensis type strain. This study aimed to evaluate whether niclosamide also has antifungal activity against Sporothrix globosa, Sporothrix schenckii and other S. brasiliensis strains with distinct genotypes and antifungal susceptibility status. Minimal inhibitory and fungicidal concentrations (MIC and MFC, respectively) were determined using the microdilution method according to the CLSI protocol. The checkerboard method was employed to evaluate niclosamide synergism with drugs used in sporotrichosis treatment. Metabolic activity of the strains under niclosamide treatment was evaluated using the resazurin dye. Niclosamide was active against all S. brasiliensis strains (n = 17), but it was ineffective (MIC > 20 µM) for some strains (n = 4) of other pathogenic Sporothrix species. Niclosamide MIC values for Sporothrix spp. were similar for mycelial and yeast-like forms of the strains (P = 0.6604). Niclosamide was fungicidal (MFC/MIC ratio ≤ 2) for most strains studied (89%). Niclosamide activity against S. brasiliensis is independent of the fungal genotype or non-wild-type phenotypes for amphotericin B, itraconazole, or terbinafine. These antifungal drugs presented indifferent interactions with niclosamide. Niclosamide has demonstrated potential for repurposing as a treatment for sporotrichosis, particularly in S. brasiliensis cases, instigating in vivo studies to validate the in vitro findings., (© 2024. The Author(s) under exclusive licence to Sociedade Brasileira de Microbiologia.)
- Published
- 2024
- Full Text
- View/download PDF