15 results on '"Antonucci, E"'
Search Results
2. The Ultraviolet Coronagraph Spectrometer for the Solar and Heliospheric Observatory
- Author
-
Kohl, J. L., Esser, R., Gardner, L. D., Habbal, S., Daigneau, P. S., Dennis, E. F., Nystrom, G. U., Panasyuk, A., Raymond, J. C., Smith, P. L., Strachan, L., Ballegooijen, A. A. Van, Noci, G., Fineschi, S., Romoli, M., Ciaravella, A., Modigliani, A., Huber, M. C. E., Antonucci, E., Benna, C., Giordano, S., Tondello, G., Nicolosi, P., Naletto, G., Pernechele, C., Spadaro, D., Poletto, G., Livi, S., Von Der Lühe, O., Geiss, J., Timothy, J. G., Gloeckler, G., Allegra, A., Basile, G., Brusa, R., Wood, B., Siegmund, O. H. W., Fowler, W., Fisher, R., Jhabvala, M., Fleck, B., editor, Domingo, V., editor, and Poland, A., editor
- Published
- 1995
- Full Text
- View/download PDF
3. Slow wind belt in the quiet solar corona.
- Author
-
Antonucci, E., Downs, C., Capuano, G. E., Spadaro, D., Susino, R., Telloni, D., Andretta, V., Da Deppo, V., De Leo, Y., Fineschi, S., Frassetto, F., Landini, F., Naletto, G., Nicolini, G., Pancrazzi, M., Romoli, M., Stangalini, M., Teriaca, L., and Uslenghi, M.
- Subjects
- *
SOLAR wind , *SOLAR corona , *CURRENT sheets , *MAGNETIC fields , *HYDROGEN atom , *VELOCITY - Abstract
The slow solar wind belt in the quiet corona, observed with the Metis coronagraph on board Solar Orbiter on May 15, 2020, during the activity minimum of the cycle 24, in a field of view extending from 3.8 R ⊙ to 7.0 R ⊙ , is formed by a slow and dense wind stream running along the coronal current sheet, accelerating in the radial direction and reaching at 6.8 R ⊙ a speed within 150 and 190 km s−1, depending on the assumptions on the velocity distribution of the neutral hydrogen atoms in the coronal plasma. The slow stream is separated by thin regions of high velocity shear from faster streams, almost symmetric relative to the current sheet, with peak velocity within 175 and 230 km s−1 at the same coronal level. The density–velocity structure of the slow wind zone is discussed in terms of the expansion factor of the open magnetic field lines that is known to be related to the speed of the quasi-steady solar wind, and in relation to the presence of a web of quasi-separatrix layers, S-web, the potential sites of reconnection that release coronal plasma into the wind. The parameters characterizing the coronal magnetic field lines are derived from 3D MHD model calculations. The S-web is found to coincide with the latitudinal region where the slow wind is observed in the outer corona and is surrounded by thin layers of open field lines expanding in a non-monotonic way. [ABSTRACT FROM AUTHOR]
- Published
- 2023
- Full Text
- View/download PDF
4. HERSCHEL/SCORE, imaging the solar corona in visible and EUV light: CCD camera characterization
- Author
-
Pancrazzi, M., Focardi, M., Landini, F., Romoli, M., Fineschi, S., Gherardi, A., Pace, E., Massone, G., Antonucci, E., Moses, D., Newmark, J., Wang, D., and Rossi, G.
- Published
- 2010
- Full Text
- View/download PDF
5. The Solar Orbiter mission: Science overview.
- Author
-
Müller, D., St. Cyr, O. C., Zouganelis, I., Gilbert, H. R., Marsden, R., Nieves-Chinchilla, T., Antonucci, E., Auchère, F., Berghmans, D., Horbury, T. S., Howard, R. A., Krucker, S., Maksimovic, M., Owen, C. J., Rochus, P., Rodriguez-Pacheco, J., Romoli, M., Solanki, S. K., Bruno, R., and Carlsson, M.
- Subjects
SOLAR wind ,SOLAR activity ,SOLAR corona ,SUN ,ELECTROMAGNETIC fields ,SOLAR magnetic fields ,SUN observations ,CORONAL mass ejections - Abstract
Aims. Solar Orbiter, the first mission of ESA's Cosmic Vision 2015–2025 programme and a mission of international collaboration between ESA and NASA, will explore the Sun and heliosphere from close up and out of the ecliptic plane. It was launched on 10 February 2020 04:03 UTC from Cape Canaveral and aims to address key questions of solar and heliospheric physics pertaining to how the Sun creates and controls the Heliosphere, and why solar activity changes with time. To answer these, the mission carries six remote-sensing instruments to observe the Sun and the solar corona, and four in-situ instruments to measure the solar wind, energetic particles, and electromagnetic fields. In this paper, we describe the science objectives of the mission, and how these will be addressed by the joint observations of the instruments onboard. Methods. The paper first summarises the mission-level science objectives, followed by an overview of the spacecraft and payload. We report the observables and performance figures of each instrument, as well as the trajectory design. This is followed by a summary of the science operations concept. The paper concludes with a more detailed description of the science objectives. Results. Solar Orbiter will combine in-situ measurements in the heliosphere with high-resolution remote-sensing observations of the Sun to address fundamental questions of solar and heliospheric physics. The performance of the Solar Orbiter payload meets the requirements derived from the mission's science objectives. Its science return will be augmented further by coordinated observations with other space missions and ground-based observatories. [ABSTRACT FROM AUTHOR]
- Published
- 2020
- Full Text
- View/download PDF
6. The SOHO Project
- Author
-
Antonucci, E., Bianchi, Luciana, editor, and Gilmozzi, Roberto, editor
- Published
- 1988
- Full Text
- View/download PDF
7. Effect of the non-uniform solar chromospheric Lyα radiation on determining the coronal H I outflow velocity.
- Author
-
Dolei, S., Spadaro, D., Ventura, R., Bemporad, A., Andretta, V., Sasso, C., Susino, R., Antonucci, E., Da Deppo, V., Fineschi, S., Frassetto, F., Landini, F., Naletto, G., Nicolini, G., Pancrazzi, M., and Romoli, M.
- Subjects
RADIATION ,WIND speed ,SOLAR corona ,SOLAR radiation ,SOLAR wind ,VELOCITY ,SOLAR chromosphere - Abstract
We derived maps of the solar wind outflow velocity of coronal neutral hydrogen atoms at solar minimum in the altitude range 1.5–4.0 R
⊙ . We applied the Doppler dimming technique to coronagraphic observations in the UV H I Lyα line at 121.6 nm. The technique exploits the intensity reduction in the coronal line with increasing velocities of the outflowing plasma to determine the solar wind velocity by iterative modelling. The Lyα line intensity is sensitive to the wind outflow velocity and also depends on the physical properties of coronal particles and underlying chromospheric emission. Measurements of irradiance by the chromospheric Lyα radiation in the corona are required for a rigorous application of the Doppler dimming technique, but they are not provided by past and current instrumentations. A correlation function between the H I 121.6 nm and He II 30.4 nm line intensities was used to construct Carrington rotation maps of the non-uniform solar chromospheric Lyα radiation and thus to compute the Lyα line irradiance throughout the outer corona. Approximations concerning the temperature of the scattering H I atoms and exciting solar disc radiation were also adopted to significantly reduce the computational time and obtain a faster procedure for a quick-look data analysis of future coronagraphic observations. The effect of the chromospheric Lyα brightness distribution on the resulting H I outflow velocities was quantified. In particular, we found that the usual uniform-disc approximation systematically leads to an overestimated velocity in the polar and mid-latitude coronal regions up to a maximum of about 50−60 km s−1 closer to the Sun. This difference decreases at higher altitudes, where an increasingly larger chromospheric portion, including both brighter and darker disc features, contributes to illuminate the solar corona, and the non-uniform radiation condition progressively approaches the uniform-disc approximation. [ABSTRACT FROM AUTHOR]- Published
- 2019
- Full Text
- View/download PDF
8. Comparing extrapolations of the coronal magnetic field structure at 2.5 R⊙ with multi-viewpoint coronagraphic observations.
- Author
-
Sasso, C., Pinto, R. F., Andretta, V., Howard, R. A., Vourlidas, A., Bemporad, A., Dolei, S., Spadaro, D., Susino, R., Antonucci, E., Abbo, L., Da Deppo, V., Fineschi, S., Frassetto, F., Landini, F., Naletto, G., Nicolini, G., Nicolosi, P., Pancrazzi, M., and Romoli, M.
- Subjects
MAGNETIC structure ,MAGNETIC fields ,EXTRAPOLATION ,SOLAR corona ,SOLAR magnetic fields ,ROTATION of the Sun - Abstract
The magnetic field shapes the structure of the solar corona, but we still know little about the interrelationships between the coronal magnetic field configurations and the resulting quasi-stationary structures observed in coronagraphic images (such as streamers, plumes, and coronal holes). One way to obtain information on the large-scale structure of the coronal magnetic field is to extrapolate it from photospheric data and compare the results with coronagraphic images. Our aim is to verify whether this comparison can be a fast method to systematically determine the reliability of the many methods that are available for modeling the coronal magnetic field. Coronal fields are usually extrapolated from photospheric measurements that are typically obtained in a region close to the central meridian on the solar disk and are then compared with coronagraphic images at the limbs, acquired at least seven days before or after to account for solar rotation. This implicitly assumes that no significant changes occurred in the corona during that period. In this work, we combine images from three coronagraphs (SOHO/LASCO-C2 and the two STEREO/SECCHI-COR1) that observe the Sun from different viewing angles to build Carrington maps that cover the entire corona to reduce the effect of temporal evolution to about five days. We then compare the position of the observed streamers in these Carrington maps with that of the neutral lines obtained from four different magnetic field extrapolations to evaluate the performances of the latter in the solar corona. Our results show that the location of coronal streamers can provide important indications to distinguish between different magnetic field extrapolations. [ABSTRACT FROM AUTHOR]
- Published
- 2019
- Full Text
- View/download PDF
9. SOHO/UVCS Detection of Turbulence in a Coronal Mass Ejection.
- Author
-
Telloni, D., D’Amicis, R., and Antonucci, E.
- Subjects
CORONAL mass ejections ,SOLAR activity ,SPECTRUM analysis instruments ,SOLAR corona ,CORONAGRAPHS - Abstract
The intensity of the H I Lyα line measured by the UltraViolet Coronagraph Spectrometer (UVCS) onboard the Solar and Heliospheric Observatory (SOHO) is used to investigate the density turbulence within the coronal mass ejection (CME) occurred on 2006 December 24, in the South polar coronal hole. In order to compare the spectral index inside the CME with those found in the undisturbed coronal plasma, we examined the CME data by applying the wavelet technique. This temporal analysis reveals, during the whole observation time, the existence of large-scale density fluctuations of periods from tens of minutes to a few hours. However, during the CME, the power spectrum becomes less steep with a spectral slope about 5/3, typical of the turbulent regime, whilst prior to the CME and in the recovery phase the spectral slope is about 3. The Kolmogorov-like spectrum observed within the CME is evidence for the nearly incompressible turbulent character of the CME plasma. This spectrum is significantly different from that of the high-speed flow from coronal holes and the low-speed wind originating above closed-field coronal streamers. This result is particularly important to advance in the understanding of where the main source of CME flux injection resides. [ABSTRACT FROM AUTHOR]
- Published
- 2010
- Full Text
- View/download PDF
10. The Ultraviolet and Visible-light Coronagraph of the HERSCHEL experiment.
- Author
-
Romoli, M., Antonucci, E., Fineschi, S., Gardiol, D., Zangrilli, L., Malvezzi, M.A., Pace, E., Gori, L., Landini, F., Gherardi, A., Da Deppo, V., Naletto, G., Nicolosi, P., Pelizzo, M.G., Moses, J.D., Newmark, J., Howard, R., Auchere, F., and Delaboudinière, J.P.
- Subjects
- *
HELIOSPHERE , *SOLAR wind , *SOLAR corona , *CORONAGRAPHS - Abstract
The Herschel (HElium Resonant Scattering in the Corona and HELiosphere) experiment, to be flown on a sounding rocket, will investigate the helium coronal abundance and the solar wind acceleration from a range of solar source structures by obtaining the first simultaneous observations of the electron, proton and helium solar corona. The HERSCHEL payload consists of the EUV Imaging Telescope (EIT), that resembles the SOHO/EIT instrument, and the Ultraviolet and Visible Coronagraph (UVC).UVC is an imaging coronagraph that will image the solar corona from 1.4 to 4 solar radii in the EUV lines of HI 121.6 nm and the HeII 30.4 nm and in the visible broadband polarized brightness. The UVC coronagraph is externally occulted with a novel design as far as the stray light rejection is concerned. Therefore, HERSCHEL will also establish proof-of-principle for the Ultraviolet Coronagraph, which is in the ESA Solar Orbiter Mission baseline.The scientific objectives of the experiment will be discussed, togetherwith a description of the UVC coronagraph. © 2003 American Institute of Physics [ABSTRACT FROM AUTHOR]
- Published
- 2003
- Full Text
- View/download PDF
11. Coronal and solar wind elemental abundances.
- Author
-
Raymond, J. C., Mazur, J. E., Allegrini, F., Antonucci, E., Del Zanna, G., Giordano, S., Ho, G., Ko, Y.-K., Landi, E., Lazarus, A., Parenti, S., Poletto, G., Reinard, A., Rodriguez-Pacheco, J., Teriaca, L., Wurz, P., and Zangrilli, L.
- Subjects
SOLAR wind ,SOLAR corona - Abstract
Coronal elemental abundances, as compared with abundances in the solar wind and solar energetic particles, provide the means for connecting solar wind gas with its coronal source. Comparison of coronal abundances with photospheric values shows fractionation with the ionization potential of the atom, providing important, though not yet fully understood, information about the exchange of material between corona and chromosphere. Fractionation due to gravitational settling provides clues about flows within the corona. In this paper, we discuss the uncertainties of abundance determinations with spectroscopic techniques and in situ measurements, we survey the ranges of abundance variations in both the corona and solar wind, and we discuss the progress in correlating solar wind features with their coronal sources. [ABSTRACT FROM AUTHOR]
- Published
- 2001
12. Stereoscopic investigation on plasma density fluctuations in the outer solar corona (Research Note).
- Author
-
Telloni, D., Antonucci, E., Dolei, S., Romano, P., Spadaro, D., and Ventura, R.
- Subjects
- *
PLASMA density , *SOLAR corona , *SPATIAL distribution (Quantum optics) , *CORONAGRAPHS , *MAGNETIC fields - Abstract
This research note extends a previous work focused on the 2D reconstruction of the spatial distribution and temporal evolution of the plasma density fluctuations in the outer solar corona and based on STEREO COR1-A white-light observations. By using the corresponding total brightness images obtained in the same observational period with the coronagraph COR1-B onboard the "Behind" twin STEREO-B spacecraft, and adopting the same methodological approach as for COR1-A data, it was possible to confirm the results of the previous work and argue for the 3D configuration of the fluctuations of the coronal plasma. This provides further evidence in support of a scenario in which the fluctuating features, which are recurrent and spatially coherent, are localized along the magnetic field lines and points out the crucial role played by the 3D magnetic field topology in the confinement and evolution of the plasma density fluctuations. [ABSTRACT FROM AUTHOR]
- Published
- 2014
- Full Text
- View/download PDF
13. DETECTION OF PLASMA FLUCTUATIONS IN WHITE-LIGHT IMAGES OF THE OUTER SOLAR CORONA: INVESTIGATION OF THE SPATIAL AND TEMPORAL EVOLUTION.
- Author
-
TELLONI, D., VENTURA, R., ROMANO, P., SPADARO, D., and ANTONUCCI, E.
- Subjects
PLASMA fluctuations ,THERMAL conductivity ,SOLAR atmosphere ,CORONAL holes ,SOLAR corona - Abstract
This work focuses on the first results from the identification and characterization of periodic plasma density fluctuations in the outer corona, observed in STEREO-A COR1 white-light image time series. A two-dimensional reconstruction of the spatial distribution and temporal evolution of the coronal fluctuation power has been performed over the whole plane of the sky, from 1.4 to 4.0 R☉. The adopted diagnostic tool is based on wavelet transforms. This technique, with respect to the standard Fourier analysis, has the advantage of localizing non-persistent fluctuating features and exploring variations of the relating wavelet power in both space and time. The map of the variance of the coronal brightness clearly outlines intermittent spatially coherent fluctuating features, localized along, or adjacent to, the strongest magnetic field lines. In most cases, they do not correspond to the visible coronal structures in the brightness maps. The results obtained provide a scenario in which the solar corona shows quasi-periodic, non-stationary density variations characterized by a wide range of temporal and spatial scales and strongly confined by the magnetic field topology. In addition, structures fluctuating with larger power are larger in size and evolve more slowly. The characteristic periodicities of the fluctuations are comparable to their lifetimes. This suggests that plasma fluctuations lasting only one or two wave periods and initially characterized by a single dominant periodicity either rapidly decay into a turbulent mixed flow via nonlinear interactions with other plasma modes, or they are damped by thermal conduction. The periodic non-stationary coronal fluctuations outlined by the closed field lines at low and mid latitudes might be associated with the existence of slow standing magneto-acoustic waves excited by the convective supergranular motion. The fluctuating ray-like structures observed along open field lines appear to be linked either to the intermittent nature of the processes underlying the generation of magnetic reconnection in the polar regions or to the oscillatory transverse displacements of the coronal ray itself. [ABSTRACT FROM AUTHOR]
- Published
- 2013
- Full Text
- View/download PDF
14. The Ultraviolet Coronagraph Spectrometer for the solar and heliospheric observatory.
- Author
-
Kohl, J., Esser, R., Gardner, L., Habbal, S., Daigneau, P., Dennis, E., Nystrom, G., Panasyuk, A., Raymond, J., Smith, P., Strachan, L., Ballegooijen, A., Noci, G., Fineschi, S., Romoli, M., Ciaravella, A., Modigliani, A., Huber, M., Antonucci, E., and Benna, C.
- Abstract
The SOHO Ultraviolet Coronagraph Spectrometer (UVCS/SOHO) is composed of three reflecting telescopes with external and internal occultation and a spectrometer assembly consisting of two toric grating spectrometers and a visible light polarimeter. The purpose of the UVCS instrument is to provide a body of data that can be used to address a broad range of scientific questions regarding the nature of the solar corona and the generation of the solar wind. The primary scientific goals are the following: to locate and characterize the coronal source regions of the solar wind, to identify and understand the dominant physical processes that accelerate the solar wind, to understand how the coronal plasma is heated in solar wind acceleration regions, and to increase the knowledge of coronal phenomena that control the physical properties of the solar wind as determined by in situ measurements. To progress toward these goals, the UVCS will perform ultraviolet spectroscopy and visible polarimetry to be combined with plasma diagnostic analysis techniques to provide detailed empirical descriptions of the extended solar corona from the coronal base to a heliocentric height of 12 solar radii. [ABSTRACT FROM AUTHOR]
- Published
- 1995
- Full Text
- View/download PDF
15. Models and data analysis tools for the Solar Orbiter mission
- Author
-
Kamen Kozarev, Hardi Peter, X. Bonnin, Manolis K. Georgoulis, Alexis P. Rouillard, Daniele Spadaro, A. De Groof, Angels Aran, Raul Gomez-Herrero, M. Bouchemit, Alessandro Bemporad, R. A. Howard, A. S. Brun, F. Espinosa Lara, E. Budnik, S. I. Jones, N. E. Raouafi, Rita Ventura, J. C. del Toro Iniesta, David Pérez-Suárez, Silvano Fineschi, Miho Janvier, Jon A. Linker, Thomas Wiegelmann, Teresa Nieves-Chinchilla, Timothy S. Horbury, L. R. Bellot Rubio, A. Giunta, Nicolas Poirier, Bogdan Nicula, Andreas Lagg, Kévin Dalmasse, Jim M. Raines, Michael Lavarra, Carl J. Henney, Holly Gilbert, S. Parenti, D. Orozco Suárez, Mikel Indurain, David R. Williams, David Berghmans, L. Etesi, Andrzej Fludra, F. Auchère, Daniel Müller, Vincent Génot, Y. Wu, Jens Pomoell, Marco Romoli, N. Rich, A. Kouloumvakos, S. Caminade, Benoit Lavraud, Antoine Strugarek, G. Mann, Philippe Louarn, Arnaud Masson, J. Carlyle, L. Sanchez, I. Zouganelis, Baptiste Cecconi, Eric Buchlin, Javier Rodriguez-Pacheco, T. Amari, M. Haberreiter, Thomas Straus, C. Watson, Alexander Warmuth, Johann Hirzberger, Säm Krucker, Athanasios Papaioannou, Tino L. Riethmüller, Pedro Osuna, Cis Verbeeck, Shane A. Maloney, William T. Thompson, Luciano Rodriguez, Sami K. Solanki, H. Önel, Paolo Pagano, I. Cernuda, Andrei Fedorov, Luca Teriaca, E. Kraaikamp, Nicole Vilmer, Rui F. Pinto, S. Dolei, Simon Plunkett, Roberto Susino, Etienne Pariat, Andrew Walsh, Clementina Sasso, Vincenzo Andretta, Christopher J. Owen, Donald M. Hassler, S. Guest, O. C. St. Cyr, Anastasios Anastasiadis, Ester Antonucci, Angelos Vourlidas, Andrei Zhukov, Milan Maksimovic, C. N. Arge, Matthieu Alexandre, Joseph M. Davila, Centre de Physique Théorique [Palaiseau] (CPHT), École polytechnique (X)-Centre National de la Recherche Scientifique (CNRS), Department of Physics, Space Physics Research Group, Institut de recherche en astrophysique et planétologie (IRAP), Institut national des sciences de l'Univers (INSU - CNRS)-Université Toulouse III - Paul Sabatier (UT3), Université Fédérale Toulouse Midi-Pyrénées-Université Fédérale Toulouse Midi-Pyrénées-Observatoire Midi-Pyrénées (OMP), Météo France-Centre National d'Études Spatiales [Toulouse] (CNES)-Université Fédérale Toulouse Midi-Pyrénées-Centre National de la Recherche Scientifique (CNRS)-Institut de Recherche pour le Développement (IRD)-Météo France-Centre National d'Études Spatiales [Toulouse] (CNES)-Centre National de la Recherche Scientifique (CNRS)-Institut de Recherche pour le Développement (IRD)-Centre National de la Recherche Scientifique (CNRS), Naval Research Laboratory (NRL), European Space Astronomy Centre (ESAC), European Space Agency (ESA), INAF - Osservatorio Astrofisico di Torino (OATo), Istituto Nazionale di Astrofisica (INAF), INAF - Osservatorio Astrofisico di Catania (OACT), Institut d'astrophysique spatiale (IAS), Université Paris-Sud - Paris 11 (UP11)-Institut national des sciences de l'Univers (INSU - CNRS)-Centre National de la Recherche Scientifique (CNRS), National Center for Atmospheric Research [Boulder] (NCAR), Laboratoire de Physique des Plasmas (LPP), Université Paris-Sud - Paris 11 (UP11)-Université Pierre et Marie Curie - Paris 6 (UPMC)-Observatoire de Paris, Université Paris sciences et lettres (PSL)-Université Paris sciences et lettres (PSL)-École polytechnique (X)-Sorbonne Université (SU)-Université Paris-Saclay-Centre National de la Recherche Scientifique (CNRS), Institut de Recherche sur la Fusion par confinement Magnétique (IRFM), Commissariat à l'énergie atomique et aux énergies alternatives (CEA), Stéréochimie et Interactions Moléculaires (STIM), École normale supérieure - Lyon (ENS Lyon)-Université Claude Bernard Lyon 1 (UCBL), Université de Lyon-Université de Lyon-Centre National de la Recherche Scientifique (CNRS), Royal Observatory of Belgium [Brussels] (ROB), Max-Planck-Institut für Sonnensystemforschung (MPS), Max-Planck-Gesellschaft, Centre de Recherche en Transplantation et Immunologie (U1064 Inserm - CRTI), Institut National de la Santé et de la Recherche Médicale (INSERM)-Université de Nantes - UFR de Médecine et des Techniques Médicales (UFR MEDECINE), Université de Nantes (UN)-Université de Nantes (UN), Centre National de la Recherche Scientifique (CNRS)-École polytechnique (X), Research and Scientific Support Department, ESTEC (RSSD), European Space Research and Technology Centre (ESTEC), European Space Agency (ESA)-European Space Agency (ESA), INAF - Osservatorio Astronomico di Capodimonte (OAC), Institut Jacques Monod (IJM (UMR_7592)), Université Paris Diderot - Paris 7 (UPD7)-Centre National de la Recherche Scientifique (CNRS), Solar-Terrestrial Centre of Excellence [Brussels] (STCE), Laboratoire d'études spatiales et d'instrumentation en astrophysique (LESIA), Université Pierre et Marie Curie - Paris 6 (UPMC)-Institut national des sciences de l'Univers (INSU - CNRS)-Observatoire de Paris, Université Paris sciences et lettres (PSL)-Université Paris sciences et lettres (PSL)-Université Paris Diderot - Paris 7 (UPD7)-Centre National de la Recherche Scientifique (CNRS), NOVELTIS [Sté], Department of Physics and Astronomy [Iowa City], University of Iowa [Iowa City], NASA Goddard Space Flight Center (GSFC), Space Science and Technology Department [Didcot] (RAL Space), STFC Rutherford Appleton Laboratory (RAL), Science and Technology Facilities Council (STFC)-Science and Technology Facilities Council (STFC), Laboratory for Atmospheric and Space Physics [Boulder] (LASP), University of Colorado [Boulder], Blackett Laboratory, Imperial College London, EADS Astrium SAS, Science Applications International Corporation (SAIC), Space Science and Applications, Los Alamos National Laboratory (LANL), Centre d'étude spatiale des rayonnements (CESR), Observatoire Midi-Pyrénées (OMP), Météo France-Centre National d'Études Spatiales [Toulouse] (CNES)-Université Fédérale Toulouse Midi-Pyrénées-Centre National de la Recherche Scientifique (CNRS)-Institut de Recherche pour le Développement (IRD)-Météo France-Centre National d'Études Spatiales [Toulouse] (CNES)-Université Fédérale Toulouse Midi-Pyrénées-Centre National de la Recherche Scientifique (CNRS)-Institut de Recherche pour le Développement (IRD)-Centre National de la Recherche Scientifique (CNRS)-Institut national des sciences de l'Univers (INSU - CNRS)-Université Toulouse III - Paul Sabatier (UT3), Université Fédérale Toulouse Midi-Pyrénées, Trinity College Dublin, Leibniz-Institut für Astrophysik Potsdam (AIP), Laboratoire Francis PERRIN (LFP - URA 2453), Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Institut de Chimie du CNRS (INC)-Centre National de la Recherche Scientifique (CNRS), Institut d'Electronique du Solide et des Systèmes (InESS), Université Louis Pasteur - Strasbourg I-Centre National de la Recherche Scientifique (CNRS), Centro de Investigacion Cientifica y de Education Superior de Ensenada [Mexico] (CICESE), Laboratoire d'études spatiales et d'instrumentation en astrophysique (LESIA (UMR_8109)), Institut national des sciences de l'Univers (INSU - CNRS)-Observatoire de Paris, Université Paris sciences et lettres (PSL)-Université Paris sciences et lettres (PSL)-Université Paris Diderot - Paris 7 (UPD7)-Sorbonne Université (SU)-Centre National de la Recherche Scientifique (CNRS), Ecosystèmes et paysages montagnards (UR EPGR), Centre national du machinisme agricole, du génie rural, des eaux et forêts (CEMAGREF), Istituto Nazionale di Fisica Nucleare, Sezione di Napoli (INFN, Sezione di Napoli), Istituto Nazionale di Fisica Nucleare (INFN), Max Planck Institute for Solar System Research (MPS), Unité Scientifique de la Station de Nançay (USN), Centre National de la Recherche Scientifique (CNRS)-Observatoire de Paris, Université Paris sciences et lettres (PSL)-Université Paris sciences et lettres (PSL)-Institut national des sciences de l'Univers (INSU - CNRS)-Observatoire des Sciences de l'Univers en région Centre (OSUC), Université Paris sciences et lettres (PSL)-Université Paris sciences et lettres (PSL)-Université d'Orléans (UO)-Centre National de la Recherche Scientifique (CNRS)-Institut national des sciences de l'Univers (INSU - CNRS)-Observatoire de Paris, Université Paris sciences et lettres (PSL)-Université d'Orléans (UO)-Centre National de la Recherche Scientifique (CNRS)-Université d'Orléans (UO), Microbiology Department, St. Jame's Hospital, European Research Council, European Commission, Science and Technology Facilities Council (UK), Durham University, Centre National D'Etudes Spatiales (France), Helmholtz Association, German Centre for Air and Space Travel, Ministerio de Ciencia, Innovación y Universidades (España), Université Toulouse III - Paul Sabatier (UT3), Université de Toulouse (UT)-Université de Toulouse (UT)-Institut national des sciences de l'Univers (INSU - CNRS)-Observatoire Midi-Pyrénées (OMP), Institut de Recherche pour le Développement (IRD)-Université Toulouse III - Paul Sabatier (UT3), Université de Toulouse (UT)-Université de Toulouse (UT)-Institut national des sciences de l'Univers (INSU - CNRS)-Centre National d'Études Spatiales [Toulouse] (CNES)-Centre National de la Recherche Scientifique (CNRS)-Météo-France -Institut de Recherche pour le Développement (IRD)-Institut national des sciences de l'Univers (INSU - CNRS)-Centre National d'Études Spatiales [Toulouse] (CNES)-Centre National de la Recherche Scientifique (CNRS)-Météo-France -Centre National de la Recherche Scientifique (CNRS), Agence Spatiale Européenne = European Space Agency (ESA), Université Paris-Sud - Paris 11 (UP11)-Institut national des sciences de l'Univers (INSU - CNRS)-Centre National de la Recherche Scientifique (CNRS)-Centre National d’Études Spatiales [Paris] (CNES), École normale supérieure de Lyon (ENS de Lyon)-Université Claude Bernard Lyon 1 (UCBL), Max-Planck-Institut für Sonnensystemforschung = Max Planck Institute for Solar System Research (MPS), Agence Spatiale Européenne = European Space Agency (ESA)-Agence Spatiale Européenne = European Space Agency (ESA), Observatoire des Sciences de l'Univers en région Centre (OSUC), Université Paris sciences et lettres (PSL)-Université d'Orléans (UO)-Centre National de la Recherche Scientifique (CNRS), ANR-17-CE31-0006,COROSHOCK,EVALUER LE ROLE DU CHOC COMME ACCELERATEUR DE PARTICULES SOLAIRES(2017), Institut national des sciences de l'Univers (INSU - CNRS)-Centre National de la Recherche Scientifique (CNRS)-Université d'Orléans (UO)-Observatoire de Paris, Université Paris sciences et lettres (PSL)-Université Paris sciences et lettres (PSL)-Institut national des sciences de l'Univers (INSU - CNRS)-Centre National de la Recherche Scientifique (CNRS)-Université d'Orléans (UO)-Observatoire de Paris, Université Paris sciences et lettres (PSL)-Université d'Orléans (UO), Rouillard A.P., Pinto R.F., Vourlidas A., De Groof A., Thompson W.T., Bemporad A., Dolei S., Indurain M., Buchlin E., Sasso C., Spadaro D., Dalmasse K., Hirzberger J., Zouganelis I., Strugarek A., Brun A.S., Alexandre M., Berghmans D., Raouafi N.E., Wiegelmann T., Pagano P., Arge C.N., Nieves-Chinchilla T., Lavarra M., Poirier N., Amari T., Aran A., Andretta V., Antonucci E., Anastasiadis A., Auchere F., Bellot Rubio L., Nicula B., Bonnin X., Bouchemit M., Budnik E., Caminade S., Cecconi B., Carlyle J., Cernuda I., Davila J.M., Etesi L., Espinosa Lara F., Fedorov A., Fineschi S., Fludra A., Genot V., Georgoulis M.K., Gilbert H.R., Giunta A., Gomez-Herrero R., Guest S., Haberreiter M., Hassler D., Henney C.J., Howard R.A., Horbury T.S., Janvier M., Jones S.I., Kozarev K., Kraaikamp E., Kouloumvakos A., Krucker S., Lagg A., Linker J., Lavraud B., Louarn P., Maksimovic M., Maloney S., Mann G., Masson A., Muller D., Onel H., Osuna P., Orozco Suarez D., Owen C.J., Papaioannou A., Perez-Suarez D., Rodriguez-Pacheco J., Parenti S., Pariat E., Peter H., Plunkett S., Pomoell J., Raines J.M., Riethmuller T.L., Rich N., Rodriguez L., Romoli M., Sanchez L., Solanki S.K., St Cyr O.C., Straus T., Susino R., Teriaca L., Del Toro Iniesta J.C., Ventura R., Verbeeck C., Vilmer N., Warmuth A., Walsh A.P., Watson C., Williams D., Wu Y., Zhukov A.N., Université Fédérale Toulouse Midi-Pyrénées-Université Fédérale Toulouse Midi-Pyrénées-Institut national des sciences de l'Univers (INSU - CNRS)-Observatoire Midi-Pyrénées (OMP), Université Fédérale Toulouse Midi-Pyrénées-Université Fédérale Toulouse Midi-Pyrénées-Institut national des sciences de l'Univers (INSU - CNRS)-Centre National d'Études Spatiales [Toulouse] (CNES)-Centre National de la Recherche Scientifique (CNRS)-Météo-France -Institut de Recherche pour le Développement (IRD)-Institut national des sciences de l'Univers (INSU - CNRS)-Centre National d'Études Spatiales [Toulouse] (CNES)-Centre National de la Recherche Scientifique (CNRS)-Météo-France -Centre National de la Recherche Scientifique (CNRS), vilmer, nicole, and University of St Andrews. Applied Mathematics
- Subjects
010504 meteorology & atmospheric sciences ,corona [Sun] ,Solar wind ,Astrophysics ,[SDU.ASTR] Sciences of the Universe [physics]/Astrophysics [astro-ph] ,7. Clean energy ,01 natural sciences ,law.invention ,Data acquisition ,law ,Coronal mass ejection ,general [Sun] ,QB Astronomy ,Astrophysics::Solar and Stellar Astrophysics ,010303 astronomy & astrophysics ,Sun: magnetic fields ,QC ,ComputingMilieux_MISCELLANEOUS ,QB ,Physics ,[SDU.ASTR]Sciences of the Universe [physics]/Astrophysics [astro-ph] ,3rd-DAS ,energetic particles ,CORONAL MASS EJECTIONS ,numerical modeling ,magnetic fields [Sun] ,solar wind ,Physics::Space Physics ,Systems engineering ,Astrophysics::Earth and Planetary Astrophysics ,atmosphere [Sun] ,fundamental parameters [Sun] ,Sun: general ,FORCE-FREE FIELD ,Sun: fundamental parameters ,Solar radius ,Context (language use) ,STREAMER STRUCTURE ,Orbiter ,0103 physical sciences ,OPTIMIZATION APPROACH ,[SDU.ASTR.SR] Sciences of the Universe [physics]/Astrophysics [astro-ph]/Solar and Stellar Astrophysics [astro-ph.SR] ,POLARIZATION MEASUREMENTS ,Sun: Solar wind ,3-DIMENSIONAL STRUCTURE ,0105 earth and related environmental sciences ,Spacecraft ,business.industry ,Sun: corona ,[SDU.ASTR.SR]Sciences of the Universe [physics]/Astrophysics [astro-ph]/Solar and Stellar Astrophysics [astro-ph.SR] ,solar corona ,MAGNETIC-FLUX ROPES ,Astronomy and Astrophysics ,SHOCKS DRIVEN ,115 Astronomy, Space science ,SPECTRAL-LINES ,QC Physics ,13. Climate action ,Space and Planetary Science ,business ,Heliosphere ,Sun: atmosphere ,ELECTRON-DENSITY - Abstract
All authors: Rouillard, A. P.; Pinto, R. F.; Vourlidas, A.; De Groof, A.; Thompson, W. T.; Bemporad, A.; Dolei, S.; Indurain, M.; Buchlin, E.; Sasso, C.; Spadaro, D.; Dalmasse, K.; Hirzberger, J.; Zouganelis, I.; Strugarek, A.; Brun, A. S.; Alexandre, M.; Berghmans, D.; Raouafi, N. E.; Wiegelmann, T.; Pagano, P.; Arge, C. N.; Nieves-Chinchilla, T.; Lavarra, M.; Poirier, N.; Amari, T.; Aran, A.; Andretta, V.; Antonucci, E.; Anastasiadis, A.; Auchère, F.; Bellot Rubio, L.; Nicula, B.; Bonnin, X.; Bouchemit, M.; Budnik, E.; Caminade, S.; Cecconi, B.; Carlyle, J.; Cernuda, I.; Davila, J. M.; Etesi, L.; Espinosa Lara, F.; Fedorov, A.; Fineschi, S.; Fludra, A.; Génot, V.; Georgoulis, M. K.; Gilbert, H. R.; Giunta, A.; Gomez-Herrero, R.; Guest, S.; Haberreiter, M.; Hassler, D.; Henney, C. J.; Howard, R. A.; Horbury, T. S.; Janvier, M.; Jones, S. I.; Kozarev, K.; Kraaikamp, E.; Kouloumvakos, A.; Krucker, S.; Lagg, A.; Linker, J.; Lavraud, B.; Louarn, P.; Maksimovic, M.; Maloney, S.; Mann, G.; Masson, A.; Müller, D.; Önel, H.; Osuna, P.; Orozco Suarez, D.; Owen, C. J.; Papaioannou, A.; Pérez-Suárez, D.; Rodriguez-Pacheco, J.; Parenti, S.; Pariat, E.; Peter, H.; Plunkett, S.; Pomoell, J.; Raines, J. M.; Riethmüller, T. L.; Rich, N.; Rodriguez, L.; Romoli, M.; Sanchez, L.; Solanki, S. K.; St Cyr, O. C.; Straus, T.; Susino, R.; Teriaca, L.; del Toro Iniesta, J. C.; Ventura, R.; Verbeeck, C.; Vilmer, N.; Warmuth, A.; Walsh, A. P.; Watson, C.; Williams, D.; Wu, Y.; Zhukov, A. N.-- Open Access article, published by EDP Sciences, under the terms of the Creative Commons Attribution License (https://creativecommons.org/licenses/by/4.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited., Context. The Solar Orbiter spacecraft will be equipped with a wide range of remote-sensing (RS) and in situ (IS) instruments to record novel and unprecedented measurements of the solar atmosphere and the inner heliosphere. To take full advantage of these new datasets, tools and techniques must be developed to ease multi-instrument and multi-spacecraft studies. In particular the currently inaccessible low solar corona below two solar radii can only be observed remotely. Furthermore techniques must be used to retrieve coronal plasma properties in time and in three dimensional (3D) space. Solar Orbiter will run complex observation campaigns that provide interesting opportunities to maximise the likelihood of linking IS data to their source region near the Sun. Several RS instruments can be directed to specific targets situated on the solar disk just days before data acquisition. To compare IS and RS, data we must improve our understanding of how heliospheric probes magnetically connect to the solar disk. Aims. The aim of the present paper is to briefly review how the current modelling of the Sun and its atmosphere can support Solar Orbiter science. We describe the results of a community-led effort by European Space Agency's Modelling and Data Analysis Working Group (MADAWG) to develop different models, tools, and techniques deemed necessary to test different theories for the physical processes that may occur in the solar plasma. The focus here is on the large scales and little is described with regards to kinetic processes. To exploit future IS and RS data fully, many techniques have been adapted to model the evolving 3D solar magneto-plasma from the solar interior to the solar wind. A particular focus in the paper is placed on techniques that can estimate how Solar Orbiter will connect magnetically through the complex coronal magnetic fields to various photospheric and coronal features in support of spacecraft operations and future scientific studies. Methods. Recent missions such as STEREO, provided great opportunities for RS, IS, and multi-spacecraft studies. We summarise the achievements and highlight the challenges faced during these investigations, many of which motivated the Solar Orbiter mission. We present the new tools and techniques developed by the MADAWG to support the science operations and the analysis of the data from the many instruments on Solar Orbiter. Results. This article reviews current modelling and tool developments that ease the comparison of model results with RS and IS data made available by current and upcoming missions. It also describes the modelling strategy to support the science operations and subsequent exploitation of Solar Orbiter data in order to maximise the scientific output of the mission. Conclusions. The on-going community effort presented in this paper has provided new models and tools necessary to support mission operations as well as the science exploitation of the Solar Orbiter data. The tools and techniques will no doubt evolve significantly as we refine our procedure and methodology during the first year of operations of this highly promising mission. © 2020 A. P. Rouillard et al., Solar Orbiter is a joint ESA and NASA mission. A. Vourlidas' Solar Orbiter effort is supported by NRL grant N00173-16-1-G029. P. Pagano would like to thank D. H. Mackay and S. L. Yardley for their valuable contributions, the European Research Council (ERC) under the European Union Horizon 2020 research and innovation program (grant agreement No. 647214), and the DiRAC Data Centric system at Durham University, operated by the Institute for Computational Cosmology on behalf of the STFC DiRAC HPC Facility (http://www.dirac.ac.uk).This equipment was funded by a BIS National E-infrastructure capital grant ST/K00042X/1, STFC capital grant ST/K00087X/1, DiRAC Operations grant ST/K003267/1 and Durham University. DiRAC is part of the National E-Infrastructure. A. Rouillard, V. Genot, M. Janvier, Elie Soubrier, F. Auchere, E. Buchlin and E. Pariat acknowledge support from the French space agency (Centre National d'Etudes Spatiales; CNES; https://cnes.fr/fr) that funds activity in plasma physics data center (Centre de Donnees de la Physique des Plasmas; CDPP; http://cdpp.eu/) and the Multi Experiment Data and Operation Center (MEDOC; https://idoc.ias.u-psud.fr/MEDOC), and the space weather team in Toulouse (Solar-Terrestrial Observations and Modelling Service; STORMS; http://storms-service.irap.omp.eu/).This includes funding for Gaia-DEM, the data mining tools AMDA (http://amda.cdpp.eu/), CLWEB (clweb.cesr. fr/) and the propagation tool (http://propagationtool.cdpp.eu).R.Pinto, M. Lavarra, Y. Wu and A. Kouloumvakos acknowledge financial support from the ANR project SLOW_ SOURCE No. ANR-17-CE31-0006-01, ANR project COROSHOCK No. ANR-18-ERC1-0006-01 and FP7 HELCATS project https://www.helcats-fp7.eu/under the FP7 EU contract number 606692. A. Warmuth acknowledges the support by DLR under grant No. 50 QL 0001. The STEREO SECCHI data are produced by a consortium of RAL (UK), NRL (USA), LMSAL (USA), GSFC (USA), MPS (Germany), CSL (Belgium), IOTA (France) and IAS (France). The ACE data were obtained from the ACE science center. The WIND data were obtained from the Space Physics Data Facility. Javier Rodriguez-Pacheco acknowledges Spanish Project: FEDER/MCIU-AEI/Project ESP2017-88436-R.
- Published
- 2020
Catalog
Discovery Service for Jio Institute Digital Library
For full access to our library's resources, please sign in.