1. Efficient calculation of electronic coupling integrals with the dimer projection method via a density matrix tight-binding potential.
- Author
-
Kohn, J. T., Gildemeister, N., Grimme, S., Fazzi, D., and Hansen, A.
- Subjects
- *
DENSITY matrices , *ORGANIC semiconductors , *ORGANIC field-effect transistors , *PHOSPHORESCENCE , *CHARGE exchange , *CHARGE transfer , *SOLAR cells , *SEMICONDUCTOR design , *LIGHT emitting diodes - Abstract
Designing organic semiconductors for practical applications in organic solar cells, organic field-effect transistors, and organic light-emitting diodes requires understanding charge transfer mechanisms across different length and time scales. The underlying electron transfer mechanisms can be efficiently explored using semiempirical quantum mechanical (SQM) methods. The dimer projection (DIPRO) method combined with the recently introduced non-self-consistent density matrix tight-binding potential (PTB) [Grimme et al., J. Chem. Phys. 158, 124111 (2023)] is used in this study to evaluate charge transfer integrals important for understanding charge transport mechanisms. PTB, parameterized for the entire Periodic Table up to Z = 86, incorporates approximate non-local exchange, allowing for efficient and accurate calculations for large hetero-organic compounds. Benchmarking against established databases, such as Blumberger's HAB sets, or our newly introduced JAB69 set and comparing with high-level reference data from ωB97X-D4 calculations confirm that DIPRO@PTB consistently performs well among the tested SQM approaches for calculating coupling integrals. DIPRO@PTB yields reasonably accurate results at low computational cost, making it suitable for screening purposes and applications to large systems, such as metal-organic frameworks and cyanine-based molecular aggregates further discussed in this work. [ABSTRACT FROM AUTHOR]
- Published
- 2023
- Full Text
- View/download PDF