1. Impact of Ion Migration on the Performance and Stability of Perovskite‐Based Tandem Solar Cells.
- Author
-
Shah, Sahil, Yang, Fengjiu, Köhnen, Eike, Ugur, Esma, Khenkin, Mark, Thiesbrummel, Jarla, Li, Bor, Holte, Lucas, Berwig, Sebastian, Scherler, Florian, Forozi, Paria, Diekmann, Jonas, Peña‐Camargo, Francisco, Remec, Marko, Kalasariya, Nikhil, Aydin, Erkan, Lang, Felix, Snaith, Henry, Neher, Dieter, and De Wolf, Stefaan
- Subjects
ION bombardment ,SOLAR cells ,ION migration & velocity ,PEROVSKITE ,HYSTERESIS - Abstract
The stability of perovskite‐based tandem solar cells (TSCs) is the last major scientific/technical challenge to be overcome before commercialization. Understanding the impact of mobile ions on the TSC performance is key to minimizing degradation. Here, a comprehensive study that combines an experimental analysis of ionic losses in Si/perovskite and all‐perovskite TSCs using scan‐rate‐dependent current–voltage (J–V) measurements with drift‐diffusion simulations is presented. The findings demonstrate that mobile ions have a significant influence on the tandem cell performance lowering the ion‐freeze power conversion efficiency from >31% for Si/perovskite and >30% for all‐perovskite tandems to ≈28% in steady‐state. Moreover, the ions cause a substantial hysteresis in Si/perovskite TSCs at high scan speeds (400 s−1), and significantly influence the performance degradation of both devices through internal field screening. Additionally, for all‐perovskite tandems, subcell‐dominated J–V characterization reveals more pronounced ionic losses in the wide‐bandgap subcell during aging, which is attributed to its tendency for halide segregation. This work provides valuable insights into ionic losses in perovskite‐based TSCs which helps to separate ion migration‐related degradation modes from other degradation mechanisms and guides targeted interventions for enhanced subcell efficiency and stability. [ABSTRACT FROM AUTHOR]
- Published
- 2024
- Full Text
- View/download PDF